167 research outputs found

    Chromatographic separation of active polymer–like worm mixtures by contour length and activity

    Get PDF
    The convective transport rate of polymers through confined geometries depends on their size, allowing for size-based separation of polymer mixtures (chromatography). Here, we investigate whether mixtures of active polymers can be separated in a similar manner based on their activity. We use thin, living Tubifex tubifex worms as a model system for active polymers and study the transport of these worms by an imposed flow through a channel filled with a hexagonal pillar array. The transport rate through the channel depends strongly on the degree of activity, an effect that we assign to the different distribution of conformations sampled by the worms depending on their activity. Our results demonstrate a unique way to sort mixtures of active polymers based on their activity and provide a versatile and convenient experimental system to investigate the hydrodynamics of active polymers

    the permo carboniferous oslo rift through six stages and 65 million years

    Get PDF
    The Oslo Rift is the northernmost part of the Rotliegendes basin system in Europe. The rift was formed by lithospheric stretching north of the Tornquist fault system and is related tectonically and in time to the last phase of the Variscan orogeny. The main graben forming period in the Oslo Region began in Late Carboniferous, culminating some 20-30 Ma later with extensive volcanism and rifting, and later with uplift and emplacement of major batholiths. It ended with a final termination of intrusions in the Early Triassic, some 65 Ma after the tectonic and magmatic onset. We divide the geological development of the rift into six stages. Sediments, even with marine incursions occur exclusively during the forerunner to rifting. The magmatic products in the Oslo Rift vary in composition and are unevenly distributed through the six stages along the length of the structure

    Rifting in heterogeneous lithosphere inferences from numerical modeling of the northern North Sea and the Oslo Graben.

    Get PDF
    Permian rifting and magmatism are widely documented across NW Europe. The different Permian basins often display contrasting structural styles and evolved in lithospheric domains with contrasting past evolution and contrasting thermotectonic ages. In particular, the Oslo Graben and the northern North Sea rift initiated in close areas of northern Europe. The Oslo Graben evolved in the cold and stable Precambrian lithosphere of Fennoscandia, whereas the northern North Sea rift took birth in freshly reworked Caledonian lithosphere. Huge volumes of magmatic rocks characterize the relatively narrow Oslo Graben. In contrast, little magmatism is documented for the wide northern North Sea rift. Differences in timing between both rifts are inferred but still debated. We present numerical thermomechanical models along a lithospheric E-W section that involves both the Oslo Graben and the northern North Sea area. Because the modeled section crosses the boundary between Caledonian and Proterozoic provinces, thermal and compositional heterogeneities are considered. As is suggested by various geophysical data sets, we also consider lithospheric thickness heterogeneities in the Precambrian lithosphere. Modeling results suggest that the northern North Sea was on top of "weak" lithosphere very sensitive to far-field stresses. Consequently, we suggest that rifting in the northern North Sea began as early as regional extension was effective (i.e., Late Carboniferous-Early Permian) and does not postdate the Oslo Graben as it is commonly assumed. Rifting in the "strong" Precambrian lithosphere is unexpected. Modeling results suggest that a pre-existing lithospheric thickness contrast within the Fennoscandian lithosphere favored rifting in the Oslo Graben

    Kinematics and Age of Syn-Intrusive Detachment Faulting in the Southern Alps: Evidence for Early Permian Crustal Extension and Implications for the Pangea A Versus B Controversy

    Get PDF
    Permian basin formation and magmatism in the Southern Alps of Italy have been interpreted as expressions of a WSW‐ENE‐trending, dextral megashear zone transforming Early Permian Pangea B into Late Permian Pangea A between ~285 and 265 Ma. In an alternative model, basin formation and magmatism resulted from N‐S crustal extension. To characterize Permian tectonics, we studied the Grassi Detachment Fault, a low‐angle extensional fault in the central Southern Alps. The footwall forms a metamorphic core complex affected by upward‐increasing, top‐to‐the‐southeast mylonitization. Two granitoid intrusions occur in the core complex, the synmylonitic Val Biandino Quartz Diorite and the postmylonitic Valle San Biagio Granite. U‐Pb zircon dating yielded crystallization ages of 289.1 ± 4.5 Ma for the former and 286.8 ± 4.9 Ma for the latter. Consequently, detachment‐related mylonitic shearing took place during the Early Permian and ended at ~288 Ma, but kinematically coherent brittle faulting continued. Considering 30° anticlockwise rotation of the Southern Alps since Early Permian, the extension direction of the Grassi Detachment Fault was originally ~N‐S. Even though a dextral continental wrench system has long been regarded as a viable model at regional scale, the local kinematic evidence is inconsistent with this and, rather, supports N‐S extensional tectonics. Based on a compilation of >200 U‐Pb zircon ages, we discuss the evolution and tectonic framework of Late Carboniferous to Permian magmatism in the Alps

    A Wide-Angle Seismic Experiment in the Skagerrak

    Get PDF
    From May 21-27, 1999, a wide-angle seismic experiment was carried out in the Skagerrak Graben. The experiment was a combined effort of the department of Geology, University of Oslo and Geomar, Kiel (as partners in the EU-TMR project: Permo-Carboniferous Rifting in Europe (PCR) - Magmatism, Geodynamics and Thermal Evolution of the Lithosphere), the Geological Institute, University of Copenhagen (Denmark) and the Geophysical Institute, University of Hamburg (Germany). The involvement of the University of Hamburg made it possible that the off-shore part of the experiment could be carried out from the R/V VALDIVIA, during cruise VAL-175, which was used for teaching purposes at that time. Air-gun shooting as well as two landshots were used for seismic source, while recording was done at sea as well as on lan

    My Second Project

    No full text
    Testing, testin
    corecore