266 research outputs found

    Design of the 12-bit Delta-Sigma Modulator using SC Technique for Vibration Sensor Output Processing

    Get PDF
    The work deals with the design of the 12-bit Delta-Sigma modulator using switched capacitors (SC) technique. The modulator serves to vibration sensor output processing. The first part describes the Delta-Sigma modulator parameters definition. Results of the proposed topology ideal model were presented as well. Next, the Delta-Sigma modulator circuitry on the transistor level was done. The ONSemiconductor I2T100 0.7 um CMOS technology was used for design. Then, the Delta-Sigma modulator nonidealities were simulated and implemented into the MATLAB ideal model of the modulator. The model of real Delta-Sigma modulator was derived. Consequently, modulator coefficients were optimized. Finally, the corner analysis of the Delta-Sigma modulator with the optimized coefficients was simulated. The value of SNDR = 82.2 dB (ENOB = 13.4 bits) was achieved

    Basic Block of Pipelined ADC Design Requirements

    Get PDF
    The paper describes design requirements of a basic stage (called MDAC - Multiplying Digital-to- Analog Converter) of a pipelined ADC. There exist error sources such as finite DC gain of opamp, capacitor mismatch, thermal noise, etc., arising when the switched capacitor (SC) technique and CMOS technology are used. These non-idealities are explained and their influences on overall parameters of a pipelined ADC are studied. The pipelined ADC including non-idealities was modeled in MATLAB - Simulink simulation environment

    Universal quantum control of an atomic spin qubit on a surface

    Get PDF
    Scanning tunneling microscopy (STM) enables the bottom-up fabrication of tailored spin systems on a surface that are engineered with atomic precision. When combining STM with electron spin resonance (ESR), these single atomic and molecular spins can be controlled quantum-coherently and utilized as electron-spin qubits. Here we demonstrate universal quantum control of such a spin qubit on a surface by employing coherent control along two distinct directions, achieved with two consecutive radio-frequency (RF) pulses with a well-defined phase difference. We first show transformations of each Cartesian component of a Bloch vector on the quantization axis, followed by ESR-STM detection. Then we demonstrate the ability to generate an arbitrary superposition state of a single spin qubit by using two-axis control schemes, in which experimental data show excellent agreement with simulations. Finally, we present an implementation of two-axis control in dynamical decoupling. Our work extends the scope of STM-based pulsed ESR, highlighting the potential of this technique for quantum gate operations of electron-spin qubits on a surface

    Thermodynamics of transition to BCS-BEC crossover superconductivity in FeSe1x_{1-x}Sx_x

    Full text link
    The BCS-BEC crossover from strongly overlapping Cooper pairs to non-overlapping composite bosons in the strong coupling limit has been a long-standing issue of interacting many-body fermion systems. Recently, FeSe semimetal with hole and electron bands emerged as a high-TcT_{\rm c} superconductor located in the BCS-BEC crossover regime, owing to its very small Fermi energies. In FeSe, however, an ordinary BCS-like heat-capacity jump is observed at TcT_{\rm c}, posing a fundamental question on the characteristics of the BCS-BEC crossover. Here we report on high-resolution heat capacity, magnetic torque, and scanning tunneling spectroscopy measurements in FeSe1x_{1-x}Sx_x. Upon entering the tetragonal phase at x>0.17x>0.17, where nematic order is suppressed, TcT_{\rm c} discontinuously decreases. In this phase, highly non-mean-field behaviors consistent with BEC-like pairing are found in the thermodynamic quantities with giant superconducting fluctuations extending far above TcT_{\rm c}, implying the change of pairing nature. Moreover, the pseudogap formation, which is expected in BCS-BEC crossover of single-band superconductors, is not observed in the tunneling spectra. These results illuminate highly unusual features of the superconducting states in the crossover regime with multiband electronic structure and competing electronic instabilities.Comment: 12 pages, 8 figure

    N-terminal sequences of uteroglobin and its precursor

    Full text link

    Circulating proteolytic signatures of chemotherapy-induced cell death in humans discovered by N-terminal labeling

    Full text link
    It is known that many chemotherapeutics induce cellular apoptosis over hours to days. During apoptosis, numerous cellular proteases are activated, most canonically the caspases. We speculated that detection of proteolytic fragments released from apoptotic cells into the peripheral blood may serve as a unique indicator of chemotherapy-induced cell death. Here we used an enzymatic labeling process to positively enrich free peptide α-amines in the plasma of hematologic malignancy patients soon after beginning treatment. This N-terminomic approach largely avoids interference by high-abundance proteins that complicate traditional plasma proteomic analyses. Significantly, by mass spectrometry methods, we found strong biological signatures of apoptosis directly in the postchemotherapy plasma, including numerous caspase-cleaved peptides as well as relevant peptides from apoptotic and cell-stress proteins second mitochondria-derived activator of caspases, HtrA serine peptidase 2, and activating transcription factor 6. We also treated hematologic cancer cell lines with clinically relevant chemotherapeutics and monitored proteolytic fragments released into the media. Remarkably, many of these peptides coincided with those found in patient samples. Overall, we identified 153 proteolytic peptides in postchemotherapy patient plasma as potential indicators of cellular apoptosis. Through targeted quantitative proteomics, we verified that many of these peptides were indeed increased post- vs. prechemotherapy in additional patients. Our findings reveal that numerous proteolytic fragments are released from dying tumor cells. Monitoring posttreatment proteolysis may lead to a novel class of inexpensive, rapid biomarkers of cell death

    The SPICA coronagraphic instrument (SCI) for the study of exoplanets

    Full text link
    We present the SPICA Coronagraphic Instrument (SCI), which has been designed for a concentrated study of extra-solar planets (exoplanets). SPICA mission provides us with a unique opportunity to make high contrast observations because of its large telescope aperture, the simple pupil shape, and the capability for making infrared observations from space. The primary objectives for the SCI are the direct coronagraphic detection and spectroscopy of Jovian exoplanets in infrared, while the monitoring of transiting planets is another important target. The specification and an overview of the design of the instrument are shown. In the SCI, coronagraphic and non-coronagraphic modes are applicable for both an imaging and a spectroscopy. The core wavelength range and the goal contrast of the coronagraphic mode are 3.5--27μ\mum, and 106^{-6}, respectively. Two complemental designs of binary shaped pupil mask coronagraph are presented. The SCI has capability of simultaneous observations of one target using two channels, a short channel with an InSb detector and a long wavelength channel with a Si:As detector. We also give a report on the current progress in the development of key technologies for the SCI.Comment: 22 pages, 10 figure

    Adaptation to ER Stress Is Mediated by Differential Stabilities of Pro-Survival and Pro-Apoptotic mRNAs and Proteins

    Get PDF
    The accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates a signaling cascade known as the unfolded protein response (UPR). Although activation of the UPR is well described, there is little sense of how the response, which initiates both apoptotic and adaptive pathways, can selectively allow for adaptation. Here we describe the reconstitution of an adaptive ER stress response in a cell culture system. Monitoring the activation and maintenance of representative UPR gene expression pathways that facilitate either adaptation or apoptosis, we demonstrate that mild ER stress activates all UPR sensors. However, survival is favored during mild stress as a consequence of the intrinsic instabilities of mRNAs and proteins that promote apoptosis compared to those that facilitate protein folding and adaptation. As a consequence, the expression of apoptotic proteins is short-lived as cells adapt to stress. We provide evidence that the selective persistence of ER chaperone expression is also applicable to at least one instance of genetic ER stress. This work provides new insight into how a stress response pathway can be structured to allow cells to avert death as they adapt. It underscores the contribution of posttranscriptional and posttranslational mechanisms in influencing this outcome

    Trafficking-Deficient G572R-hERG and E637K-hERG Activate Stress and Clearance Pathways in Endoplasmic Reticulum

    Get PDF
    Background: Long QT syndrome type 2 (LQT2) is the second most common type of all long QT syndromes. It is well-known that trafficking deficient mutant human ether-a-go-go-related gene (hERG) proteins are often involved in LQT2. Cells respond to misfolded and trafficking-deficient proteins by eliciting the unfolded protein response (UPR) and Activating Transcription Factor (ATF6) has been identified as a key regulator of the mammalian UPR. In this study, we investigated the role of ER chaperone proteins (Calnexin and Calreticulin) in the processing of G572R-hERG and E637K-hERG mutant proteins. Methods: pcDNA3-WT-hERG, pcDNA3-G572R-hERG and pcDNA3-E637K-hERG plasmids were transfected into U2OS and HEK293 cells. Confocal microscopy and western blotting were used to analyze subcellular localization and protein expression. Interaction between WT or mutant hERGs and Calnexin/Calreticulin was tested by coimmunoprecipitation. To assess the role of the ubiquitin proteasome pathway in the degradation of mutant hERG proteins, transfected HEK293 cells were treated with proteasome inhibitors and their effects on the steady state protein levels of WT and mutant hERGs were examined. Conclusion: Our results showed that levels of core-glycosylated immature forms of G572R-hERG and E637K-hERG in association with Calnexin and Calreticulin were higher than that in WT-hERG. Both mutant hERG proteins could activate the UPR by upregulating levels of active ATF6. Furthermore, proteasome inhibition increased the levels of core-glycosylated immature forms of WT and mutant hERGs. In addition, interaction between mutant hERGs and Calnexin/Calreticulin wa

    From endoplasmic-reticulum stress to the inflammatory response

    Full text link
    The endoplasmic reticulum is responsible for much of a cell's protein synthesis and folding, but it also has an important role in sensing cellular stress. Recently, it has been shown that the endoplasmic reticulum mediates a specific set of intracellular signalling pathways in response to the accumulation of unfolded or misfolded proteins, and these pathways are collectively known as the unfolded-protein response. New observations suggest that the unfolded-protein response can initiate inflammation, and the coupling of these responses in specialized cells and tissues is now thought to be fundamental in the pathogenesis of inflammatory diseases. The knowledge gained from this emerging field will aid in the development of therapies for modulating cellular stress and inflammation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62741/1/nature07203.pd
    corecore