66 research outputs found
Principles of Wind Energy Production
Three public school teachers designed basic wind turbine energy production tests to help them teach wind energy principles to middle and high school students. Variables affecting wind turbine energy production were identified (distance from wind tunnel, blade design, angle of attack, and wind speed), and experiments were conducted to test each variable. This research aligns with Georgia DOE curriculum standard STEM-FET-3.7: Apply STEM knowledge and skills through hands-on research and lab experiments that are focused upon recreating the inventions and social solutions that were realized in the past, present, and possible future. These experiments will be a part of an instructional unit of study to teach middle and high school students the principles of wind turbine energy production
Distinct populations of presympathetic-premotor neurons express orexin or melanin-concentrating hormone in the rat lateral hypothalamus
Orexin and melanin-concentrating hormone (MCH) have been implicated in mediating a variety of different behaviors. These include sleep and wakefulness, locomotion, ingestive behaviors, and fight-or-flight response, as well as anxiety- and panic-like behaviors in rodents. Despite such diversity, all these processes require coordinated recruitment of the autonomic and somatomotor efferents. We have previously mapped the locations of presympathetic-premotor neurons (PSPMNs) in the rat brain. These putative dual-function neurons send trans-synaptic projections to somatomotor and sympathetic targets and likely participate in somatomotor-sympathetic integration. A significant portion of these neurons is found within the dorsomedial (DMH) and lateral hypothalamus (LH), areas of the brain that contain MCH- and orexin- synthesizing neurons in the central nervous system. Thus, we hypothesized that hypothalamic PSPMNs utilize MCH or orexin as their neurotransmitter. To test this hypothesis, we identified PSPMNs by using recombinant strains of the pseudorabies virus (PRV) for trans-synaptic tract tracing. PRV-152, a strain that expresses enhanced green fluorescent protein, was injected into sympathectomized gastrocnemius muscle, whereas PRV-BaBlu, which expresses Β-galactosidase, was injected into the adrenal gland in the same animals. By using immunofluorescent methods, we determined whether co-infected neurons express MCH or orexin. Our findings demonstrate that PSPMNs synthesizing either MCH or orexin are present within LH, where they form two separate populations. PSPMNs located around the fornix express orexin, whereas those located around the cerebral peduncle are more likely to express MCH. These two clusters of PSPMNs within LH likely play distinct functional roles in autonomic homeostasis and stress coping mechanisms. J. Comp. Neurol. 505:586–601, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57335/1/21511_ftp.pd
Dual Hypocretin Receptor Antagonism Is More Effective for Sleep Promotion than Antagonism of Either Receptor Alone
The hypocretin (orexin) system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1) and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867) and HCRTR2 (EMPA) antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM) and non-REM (NR) sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg), almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4–6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking “drive”
Molecular Evolution of Broadly Neutralizing Llama Antibodies to the CD4-Binding Site of HIV-1
To date, no immunization of humans or animals has elicited broadly neutralizing sera able to prevent HIV-1 transmission; however, elicitation of broad and potent heavy chain only antibodies (HCAb) has previously been reported in llamas. In this study, the anti-HIV immune responses in immunized llamas were studied via deep sequencing analysis using broadly neutralizing monoclonal HCAbs as a guides. Distinct neutralizing antibody lineages were identified in each animal, including two defined by novel antibodies (as variable regions called VHH) identified by robotic screening of over 6000 clones. The combined application of five VHH against viruses from clades A, B, C and CRF_AG resulted in neutralization as potent as any of the VHH individually and a predicted 100% coverage with a median IC50 of 0.17 µg/ml for the panel of 60 viruses tested. Molecular analysis of the VHH repertoires of two sets of immunized animals showed that each neutralizing lineage was only observed following immunization, demonstrating that they were elicited de novo. Our results show that immunization can induce potent and broadly neutralizing antibodies in llamas with features similar to human antibodies and provide a framework to analyze the effectiveness of immunization protocols
Addiction and arousal: the hypocretin connection
The hypocretins, also known as orexins, are two neuropeptides now commonly described as critical components to maintain and regulate the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. Intracerebral administration of hypocretin leads to a dose-related reinstatement of drug and food seeking behaviors. Furthermore, stress-induced reinstatement can be blocked with hypocretin receptor 1 antagonism. These results, together with recent data showing that hypocretin is critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area, strongly suggest that activation of hypocretin neurons play a critical role in the development of the addiction process. The activity of hypocretin neurons may affect addictive behavior by contributing to brain sensitization or by modulating the brain reward system. Hypocretinergic cells, in coordination with brain stress systems may lead to a vulnerable state that facilitates the resumption of drug seeking behavior. Hence, the hypocretinergic system is a new drug target that may be used to prevent relapse of drug seekin
- …