35 research outputs found

    Surprising Subscriptions: How Electronic Journal Publishing Has Affected the Partnership Among Subscription Agents, Publishers and Librarians

    Get PDF
    This compilation is a mixture of papers submitted by speakers and text derived from notes taken by the moderator and Mary Hawks of the University of Arkansas for Medical Sciences Library and has been reviewed by the participants

    The Beetle Tree of Life Reveals that Coleoptera Survived End-Permium Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates – especially plants, but also including fungi, wood and leaf litter – but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life

    The Beetle Tree of Life  Reveals the Order Coleoptera Survived End Permain Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates - especially plants, but also including fungi, wood and leaf litter - but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life.Facultad de Ciencias Naturales y Muse

    Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) and annotated catalog of the species and subspecies

    Get PDF
    The pelidnotine scarabs (Scarabaeidae: Rutelinae: Rutelini) are a speciose, paraphyletic assemblage of beetles that includes spectacular metallic species (“jewel scarabs”) as well as species that are ecologically important as herbivores, pollinators, and bioindicators. These beetles suffer from a complicated nomenclatural history, due primarily to 20th century taxonomic and nomenclatural errors. We review the taxonomic history of the pelidnotine scarabs, present a provisional key to genera with overviews of all genera, and synthesize a catalog of all taxa with synonyms, distributional data, type specimen information, and 107 images of exemplar species. As a result of our research, the pelidnotine leaf chafers (a paraphyletic group) include 27 (26 extant and 1 extinct) genera and 420 valid species and subspecies (419 extant and 1 extinct). Our research makes biodiversity research on this group tractable and accessible, thus setting the stage for future studies that address evolutionary and ecological trends. Based on our research, 1 new species is described, 1 new generic synonym and 12 new species synonyms are proposed, 11 new lectotypes and 1 new neotype are designated, many new or revised nomenclatural combinations, and many unavailable names are presented. The following taxonomic changes are made: New generic synonym: The genus Heteropelidnota Ohaus, 1912 is a new junior synonym of Pelidnota MacLeay, 1819. New species synonyms: Plusiotis adelaida pavonacea Casey, 1915 is a syn. n. of Chrysina adelaida (Hope, 1841); Odontognathus gounellei Ohaus, 1908 is a revised synonym of Pelidnota ebenina (Blanchard, 1842); Pelidnota francoisgenieri Moore & Jameson, 2013 is a syn. n. of Pelidnota punctata (Linnaeus, 1758); Pelidnota genieri Soula, 2009 is a syn. n. of Pelidnota punctata (Linnaeus, 1758); Pelidnota lutea (Olivier, 1758) is a revised synonym of Pelidnota punctata (Linnaeus, 1758); Pelidnota (Pelidnota) texensis Casey, 1915 is a revised synonym of Pelidnota punctata (Linnaeus, 1758); Pelidnota (Strigidia) zikani (Ohaus, 1922) is a revised synonym of Pelidnota tibialis tibialis Burmeister, 1844; Pelidnota ludovici Ohaus, 1905 is a syn. n. of Pelidnota burmeisteri tricolor Nonfried, 1894; Rutela fulvipennis Germar, 1824 is syn. n. of Pelidnota cuprea (Germar, 1824); Pelidnota pulchella blanda Burmeister, 1844 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819); Pelidnota pulchella scapularis Burmeister, 1844 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819); Pelidnota xanthogramma Perty, 1830 is a syn. n. of Pelidnota pulchella pulchella (Kirby, 1819). New or revised statuses: Pelidnota fabricelavalettei Soula, 2009, revised status, is considered a species; Pelidnota rioensis Soula, 2009, stat. n., is considered a species; Pelidnota semiaurata semiaurata Burmeister, 1844, stat. rev., is considered a subspecies. New or comb. rev. and revised status: Plusiotis guaymi Curoe, 2001 is formally transferred to the genus Chrysina (C. guaymi (Curoe, 2001), comb. n.); Plusiotis transvolcanica Morón & Nogueira, 2016 is transferred to the genus Chrysina (C. transvolcanica (Morón & Nogueira, 2016), comb. n.). Heteropelidnota kuhnti Ohaus, 1912 is transferred to the genus Pelidnota (P. kuhnti (Ohaus, 1912), comb. n.); Odontognathus riedeli Ohaus, 1905 is considered a subspecies of Pelidnota rubripennis Burmeister, 1844 (Pelidnota rubripennis riedeli (Ohaus, 1905), revised status and comb. rev.); Pelidnota (Strigidia) acutipennis (F. Bates, 1904) is transferred to the genus Sorocha (Sorocha acutipennis (F. Bates, 1904), comb. rev.); Pelidnota (Odontognathus) nadiae Martínez, 1978 is transferred to the genus Sorocha (Sorocha nadiae (Martínez, 1978), comb. rev.); Pelidnota (Ganonota) plicipennis Ohaus, 1934 is transferred to the genus Sorocha (Sorocha plicipennis (Ohaus, 1934), comb. rev.); Pelidnota similis Ohaus, 1908 is transferred to the genus Sorocha (Sorocha similis (Ohaus, 1908), comb. rev.); Pelidnota (Ganonota) yungana Ohaus, 1934 is transferred to Sorocha (Sorocha yungana (Ohaus, 1934), comb. rev.); Pelidnota malyi Soula, 2010: 58, revised status; Xenopelidnota anomala porioni Chalumeau, 1985, revised subspecies status. To stabilize the classification of the group, a neotype is designated for the following species: Pelidnota thiliezi Soula, 2009. Lectotypes are designated for the following names (given in their original combinations): Pelidnota brevicollis Casey, 1915, Pelidnota brevis Casey, 1915, Pelidnota debiliceps Casey, 1915, Pelidnota hudsonica Casey, 1915, Pelidnota oblonga Casey, 1915, Pelidnota pallidipes Casey, 1915, Pelidnota ponderella Casey, 1915, Pelidnota strenua Casey, 1915, Pelidnota tarsalis Casey, 1915, Pelidnota texensis Casey, 1915, and Scarabaeus punctatus Linnaeus, 1758. The following published infrasubspecific names are unavailable per ICZN Article 45.6.1: Pelidnota (Odontognathus) cuprea var. coerulea Ohaus, 1913; Pelidnota (Odontognathus) cuprea var. rufoviolacea Ohaus, 1913; Pelidnota (Odontognathus) cuprea var. nigrocoerulea Ohaus, 1913; Pelidnota pulchella var. fulvopunctata Ohaus, 1913; Pelidnota pulchella var. sellata Ohaus, 1913; Pelidnota pulchella var. reducta Ohaus, 1913; Pelidnota unicolor var. infuscata Ohaus, 1913. The following published species name is unavailable per ICZN Article 11.5: Neopatatra synonyma Moore & Jameson, 2013. The following published species name is unavailable per application of ICZN Article 16.1: Parhoplognathus rubripennis Soula, 2008. Synopsis of the pelidnotine scarabs (Coleoptera, Scarabaeidae, Rutelinae, Rutelini) 3 The following published species name is unavailable per application of ICZN Article 16.4.1: Strigidia testaceovirens argentinica Soula, 2006, Pelidnota (Strigidia) testaceovirens argentinica (Soula, 2006), and Pelidnota testaceovirens argentinica (Soula, 2006). The following published species names are unavailable per application of ICZN Article 16.4.2: Homonyx digennaroi Soula, 2010; Homonyx lecourti Soula, 2010; Homonyx mulliei Soula, 2010; Homonyx simoensi Soula, 2010; Homonyx wagneri Soula, 2010; Homonyx zovii Demez & Soula, 2011; Pelidnota arnaudi Soula, 2009; Pelidnota brusteli Soula, 2010; Pelidnota chalcothorax septentrionalis Soula, 2009; Pelidnota degallieri Soula, 2010; Pelidnota lavalettei Soula, 2008; Pelidnota lavalettei Soula, 2009; Pelidnota dieteri Soula, 2011; Strigidia gracilis decaensi Soula, 2008, Pelidnota (Strigidia) gracilis decaensi (Soula, 2008), and Pelidnota gracilis decaensi (Soula, 2008); Pelidnota halleri Demez & Soula, 2011; Pelidnota injantepalominoi Demez & Soula, 2011; Pelidnota kucerai Soula, 2009; Pelidnota malyi Soula, 2010: 36-37; Pelidnota mezai Soula, 2009; Pelidnota polita darienensis Soula, 2009; Pelidnota polita orozcoi Soula, 2009; Pelidnota polita pittieri Soula, 2009; Pelidnota punctulata decolombia Soula, 2009; Pelidnota punctulata venezolana Soula, 2009; Pelidnota raingeardi Soula, 2009; Pelidnota schneideri Soula, 2010; Pelidnota simoensi Soula, 2009; Pelidnota unicolor subandina Soula, 2009; Sorocha carloti Demez & Soula, 2011; Sorocha castroi Soula, 2008; Sorocha fravali Soula, 2011; Sorocha jeanmaurettei Demez & Soula, 2011; Sorocha yelamosi Soula, 2011; Xenopelidnota bolivari Soula, 2009; Xenopelidnota pittieri pittieri Soula, 2009. Due to unavailability of the name Pseudogeniates cordobaensis Soula 2009, we describe the species as intentionally new (Pseudogeniates cordobaensis Moore, Jameson, Garner, Audibert, Smith, and Seidel, sp. n.)

    The age of homo naledi and associated sediments in the rising star cave, South Africa

    Get PDF
    New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/-70 ka, whilst a minimum age scenario yields an average age of 200 +70/-61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphologyWe would also like to thank the many funding agencies that supported various aspects of this work. In particular we would like to thank the National Geographic Society, the National Research Foundation and the Lyda Hill Foundation for significant funding of the discovery, recovery and initial analysis of this material. Further support was provided by ARC (DP140104282: PHGMD, ER, JK, HHW; FT 120100399: AH). The ESR dosimetry study undertaken by CENIEH and Griffith University has been supported by a Marie Curie International Outgoing Fellowship (under REA Grant Agreement n˚ PIOF-GA-2013–626474) of the European Union’s Seventh Framework Programme (FP7/2007-2013) and an Australian Research Council Future Fellowship (FT150100215). ESR and U-series dating undertaken at SCU were supported by ARC (DP140100919: RJB)

    Alabama: Oral Interview with Mary Zoghby (Part 1 of 2)

    No full text
    Oral interview conducted with Alabama legislator Mary Zoghby for the Southern Women Legislators Project

    Virginia: Oral Interview with Mary Marshall (Part 1 of 2)

    No full text
    Oral interview conducted with Virginia legislator Mary Marshall for the Southern Women Legislators Project

    Alabama: Oral Interview with Mary Zoghby (Part 2 of 2)

    No full text
    Continuation of oral interview with Alabama legislator Mary Zoghby

    Texas: Oral Interview with Mary Jane Bode (Part 1 of 2)

    No full text
    Oral interview conducted with former Texas legislator Mary Jane Bode for the Southern Women Legislators Project
    corecore