98 research outputs found

    The positive and negative consequences of stressors during early life

    Get PDF
    We discuss the long-term effects of stress exposure in pre- and early postnal life. We present an evolutionary framework within which such effects can be viewed, and describe how the outcomes might vary with species life histories. We focus on stressors that induce increases in glucocorticoid hormones and discuss the advantages of an experimental approach. We describe a number of studies demonstrating how exposure to these hormones in early life can influence stress responsiveness and have substantial long-term, negative consequences for adult longevity. We also describe how early life exposure to mild levels of stressors can have beneficial effects on resilience to stress in later life, and discuss how the balance of costs and benefits is likely dependent on the nature of the adult environment

    Brief increases in corticosterone affect morphology, stress responses, and telomere length, but not post-fledging movements, in a wild songbird

    Full text link
    Organisms are frequently exposed to challenges during development, such as poor weather and food shortage. Such challenges can initiate the hormonal stress response, which involves secretion of glucocorticoids. Although the hormonal stress response helps organisms deal with challenges, long-term exposure to high levels of glucocorticoids can have morphological, behavioral, and physiological consequences, especially during development. Glucocorticoids are also associated with reduced survival and telomere shortening. To investigate whether brief, acute exposures to glucocorticoids can also produce these phenotypic effects in free-living birds, we exposed wild tree swallow (Tachycineta bicolor) nestlings to a brief exogenous dose of cort once per day for five days and then measured their morphology, baseline and stress-induced corticosterone levels, and telomere length. We also deployed radio tags on a subset of nestlings, which allowed us to determine the age at which tagged nestlings left the nest (fledged) and their pattern of presence and absence at the natal site during the post-breeding period. Corticosterone-treated nestlings had lower mass, higher baseline and stress-induced corticosterone, and reduced telomeres; other metrics of morphology were affected weakly or not at all. Our treatment resulted in no significant effect on survival to fledging, fledge age, or age at first departure from the natal site, and we found no negative effect of corticosterone on inter-annual return rate. These results show that brief acute corticosterone exposure during development can have measurable effects on phenotype in free-living tree swallows. Corticosterone may therefore mediate correlations between rearing environment and phenotype in developing organisms, even in the absence of prolonged stressors.Comment: 35 pages, 4 figures, 1 appendi

    Repeated stressors in adulthood increase the rate of biological ageing

    Get PDF
    Background Individuals of the same age can differ substantially in the degree to which they have accumulated tissue damage, akin to bodily wear and tear, from past experiences. This accumulated tissue damage reflects the individual’s biological age and may better predict physiological and behavioural performance than the individual‘s chronological age. However, at present it remains unclear how to reliably assess biological age in individual wild vertebrates. Methods We exposed hand-raised adult Eurasian blackbirds (Turdus merula) to a combination of repeated immune and disturbance stressors for over one year to determine the effects of chronic stress on potential biomarkers of biological ageing including telomere shortening, oxidative stress load, and glucocorticoid hormones. We also assessed general measures of individual condition including body mass and locomotor activity. Results By the end of the experiment, stress-exposed birds showed greater decreases in telomere lengths. Stress-exposed birds also maintained higher circulating levels of oxidative damage compared with control birds. Other potential biomarkers such as concentrations of antioxidants and glucocorticoid hormone traits showed greater resilience and did not differ significantly between treatment groups. Conclusions The current data demonstrate that repeated exposure to experimental stressors affects the rate of biological ageing in adult Eurasian blackbirds. Both telomeres and oxidative damage were affected by repeated stress exposure and thus can serve as blood-derived biomarkers of biological ageing.</p

    Suitability of real-time quantitative PCR to estimate the relative telomere length in European Hake (Merluccius merluccius Linnaeus, 1758)

    Get PDF
    Telomere length measurement has been proposed as a promising tool to estimate the age of individuals in natural populations. We used real-time quantitative PCR (qPCR) to measure relative telomere length in four tissues (brain, kidney, liver and muscle) of European hake (Merluccius merluccius) in different groups based upon body length an otolith age estimate. We observed a high level of inter-individual differences in the measurements of relative telomere length in hakes of similar age and body length groups. The results of qPCR analysis showed a great variability in all measures and a lack of repeatability and reproducibility with significant statistical differences in the results of the different assays. The paper discusses the technical reasons for the variability in qPCR obtained in this work and by other authors

    Divergent patterns of telomere shortening in tropical compared to temperate stonechats

    Get PDF
    Abstract Telomeres have emerged as important biomarkers of health and senescence as they predict chances of survival in various species. Tropical birds live in more benign environments with lower extrinsic mortality and higher juvenile and adult survival than temperate birds. Therefore, telomere biology may play a more important role in tropical compared to temperate birds. We measured mean telomere length of male stonechats (Saxicola spp.) at four age classes from tropical African and temperate European breeding regions. Tropical and temperate stonechats had similarly long telomeres as nestlings. However, while in tropical stonechats pre-breeding first-years had longer telomeres than nestlings, in temperate stonechats pre-breeding first-years had shorter telomeres than nestlings. During their first breeding season, telomere length was again similar between tropical and temperate stonechats. These patterns may indicate differential survival of high-quality juveniles in tropical environments. Alternatively, more favorable environmental conditions, that is, extended parental care, may enable tropical juveniles to minimize telomere shortening. As suggested by previous studies, our results imply that variation in life history and life span may be reflected in different patterns of telomere shortening rather than telomere length. Our data provide first evidence that distinct selective pressures in tropical and temperate environments may be reflected in diverging patterns of telomere loss in birds

    The rate of telomere loss is related to maximum lifespan in birds

    Get PDF
    Telomeres are highly conserved regions of DNA that protect the ends of linear chromosomes. The loss of telomeres can signal an irreversible change to a cell's state, including cellular senescence. Senescent cells no longer divide and can damage nearby healthy cells, thus potentially placing them at the crossroads of cancer and ageing. While the epidemiology, cellular and molecular biology of telomeres are well studied, a newer field exploring telomere biology in the context of ecology and evolution is just emerging. With work to date focusing on how telomere shortening relates to individual mortality, less is known about how telomeres relate to ageing rates across species. Here, we investigated telomere length in cross-sectional samples from 19 bird species to determine how rates of telomere loss relate to interspecific variation in maximum lifespan. We found that bird species with longer lifespans lose fewer telomeric repeats each year compared with species with shorter lifespans. In addition, phylogenetic analysis revealed that the rate of telomere loss is evolutionarily conserved within bird families. This suggests that the physiological causes of telomere shortening, or the ability to maintain telomeres, are features that may be responsible for, or co-evolved with, different lifespans observed across species.This article is part of the theme issue 'Understanding diversity in telomere dynamics'

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    DNA methylation levels in candidate genes associated with chronological age in mammals are not conserved in a long-lived seabird

    Get PDF
    © 2017 De Paoli-Iseppi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Most seabirds do not have any outward identifiers of their chronological age, so estimation of seabird population age structure generally requires expensive, long-term banding studies. We investigated the potential to use a molecular age biomarker to estimate age in short-tailed shearwaters (Ardenna tenuirostris). We quantified DNA methylation in several A. tenuirostris genes that have shown age-related methylation changes in mammals. In birds ranging from chicks to 21 years of age, bisulphite treated blood and feather DNA was sequenced and methylation levels analysed in 67 CpG sites in 13 target gene regions. From blood samples, five of the top relationships with age were identified in KCNC3 loci (CpG66: R2 = 0.325, p = 0.019). In feather samples ELOVL2 (CpG42: R2 = 0.285, p = 0.00048) and EDARADD (CpG46: R2 = 0.168, p = 0.0067) were also weakly correlated with age. However, the majority of markers had no clear association with age (of 131 comparisons only 12 had a p-value &lt; 0.05) and statistical analysis using a penalised lasso approach did not produce an accurate ageing model. Our data indicate that some age-related signatures identified in orthologous mammalian genes are not conserved in the long-lived short tailed shearwater. Alternative molecular approaches will be required to identify a reliable biomarker of chronological age in these seabirds
    corecore