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We discuss the long-term effects of stress exposure in pre- and early postnal life. We present an evolutionary
framework within which such effects can be viewed, and describe how the outcomes might vary with species
life histories.We focus on stressors that induce increases in glucocorticoid hormones and discuss the advantages
of an experimental approach.We describe a number of studies demonstrating how exposure to these hormones
in early life can influence stress responsiveness and have substantial long-term, negative consequences for adult
longevity.We also describe how early life exposure to mild levels of stressors can have beneficial effects on resil-
ience to stress in later life, and discuss how the balance of costs and benefits is likely dependent on the nature of
the adult environment.
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1. Introduction

Very few animals live in an environment that does not change in
time and space. For most, day turns to night, seasons come and go,
and habitats differ from one place to the next. Such changes are largely
predictable. Animals are generally well adapted to dealwith this kind of
environmental variation, having evolved biological rhythms andmove-
ment patterns that maximise their success in passing on their genes to
the next generation. Other kinds of environmental change are less
predictable—the weather and food supplies fluctuate, predator and
competitor numbers vary, and social pressures change. Facing
onaghan),

land Ltd. This is an open access articl
unpredictable, and potentially dangerous, episodic change is more chal-
lenging. To deal with these threats, animals have evolved a suite of
stress responses that can be turned on when the challenge appears, in-
ducing changes in physiology and behaviour that maximise survival,
and turned off again when the challenge has passed. In vertebrates,
themain endocrine system that allows animals to cope with unpredict-
able change is the hypothalamic–pituitary–adrenal (HPA) axis. Per-
ceived stressors activate the HPA axis, resulting in hormonal changes,
largely involving the glucocorticoid hormones, which turn off currently
non-essential activities and stimulate others. The animal enters a so-
called ‘emergency state’ [1], in which activities such as growth, body
maintenance, and reproduction are suspended, and energy is directed
towards counteracting and surviving the imminent danger. This
prioritisation is obviously adaptive, but if growth and bodymaintenance
are suspended for long periods, this can be damaging over the long
term, potentially increasing disease risk and the pace of degeneration
in later life [2].
e under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.earlhumdev.2015.08.008&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.earlhumdev.2015.08.008
mailto:Pat.Monaghan@glasgow.ac.uk
mailto:mark.haussmann@bucknell.edu
http://dx.doi.org/10.1016/j.earlhumdev.2015.08.008
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/03783782


644 P. Monaghan, M.F. Haussmann / Early Human Development 91 (2015) 643–647
Stress responses are therefore both a friend and foe, and the costs
and benefits are balanced to give the best fitness outcome. The extent
to which long-term costs matter in an evolutionary sense varies
among species. Evolution through natural selection has shaped the life
history traits of animals (age and size at maturity, patterns of growth,
number of offspring, relative investment in self maintenance) to maxi-
mise their lifetime reproductive success. For some species, growing
fast and then having a single major reproductive event followed by
death gives the best fitness outcome, while for other species, the best
strategy is growing slowly, living a long time and repeatedly producing
small numbers of offspring. For the former life history strategy, costs
that are incurred over the long term are less important to fitness than
is the case for the latter strategy. We should therefore expect animals
with different life histories to have evolved different coping strategies.
Furthermore, the probability of encountering environmental stressors
is likely to vary in both time and space since some periods and places
are safer than others. Therefore, any information that the developing
animals can obtain on the prevailing environmental circumstances
they may live in will enable the phenotype to be adjusted to better pre-
pare them to cope with what they are most likely to encounter. This in-
formation on their future environment may calibrate their stress
responses in a manner that maximises Darwinian fitness benefits (i.e.
lifetime reproductive output). Hence we expect some environmental
shaping of the stress responses.

It is only relatively recently that developmental biologists have come
to appreciate that the environment is not simply permissive of develop-
ment but can also instruct it. As a result, a new discipline has emerged,
termed ecological developmental biology, or Eco-Devo [3]. While genes
set the potential range of phenotypes possible, we now know that the
pattern of gene expression is influenced by environmental inputs and
that these can span generations. A distinction is drawn in the Eco-
Devo literature between direct and indirect environmental effects
both of which can affect the developing animal. In the former case, the
environment directly affects the developing individuals, and in the lat-
ter case, it is through environmental effects on the physiology or actions
of the parent(s), most usually the mother. In species with high levels of
pre- and postnatal parental care, developing offspring are buffered
against some direct environmental effects; birds and mammals, for ex-
ample, regulate the developmental temperature of their offspringwith-
in narrow limits. Other factors, however, do affect the developing
offspring. The level of exposure to stressors in early life, in particular,
when the architecture of the body is being determined, may be crucial
in calibrating the developing animal's stress response system. These
types of beneficial adjustments of phenotypic traits based on signals
transmitted directly or indirectly to the developing animals have been
termed ‘predictive adaptive responses’ (PARS) [4]. This relies on some
environmental stability—that is the conditions experienced during de-
velopment need to be predictive of subsequent conditions over an ap-
propriate time frame. It is not clear whether the apparent pathologies
associated with early stress exposure [5] are in fact a consequence of
phenotypic adjustments that make the best of bad situation or repre-
sent stress levels outside of the evolved coping capabilities. An addition-
al complexity is added in that, at least for some stressors, exposure to
mild levels in early life gives rise to an enhanced resilience to stress
that can be advantageous in later life. This positive effect of stress expo-
sure is termed hormesis and is discussed further below in Section 4.

In this mini-review, we discuss stress exposure in both prenatal and
early postnatal life within the evolutionary framework outlined above.
We describe a number of relevant experiments that we have carried
out on the consequences of early life stress exposure over differing
time scales. The experiments that we describe have been carried out
mainly in birds, for a number of reasons. Birds are endothermic verte-
brates which, like mammals, maintain their developing embryos at an
optimal temperature during development; in ovo in the bird, in utero
in the mammal. Birds and mammals have a high level of parental care,
and nutrients are supplied prenatally by the mother to the embryo via
the egg yolk or the placenta. Like primates, birds are long-lived,
iteroparous breeders, having relatively slow reproductive rates (e.g.
compared with salmon or mice), slow senescence rates, and long lives.
Importantly, however, that the avian embryo develops within a sealed
system makes it possible to experimentally separate effects due to the
pre- and postnatal environment and to separate direct and indirect en-
vironmental effects.

We do not provide a fully comprehensive review of the literature in
this extensive, multidisciplinary field. Rather, we discuss a number of
key issues that can be profitably viewed in an evolutionary framework.
We focus on stressors that induce increases in glucocorticoid hormones,
such as increased predation risk or social stress. In an experimental con-
text, the increase in glucocorticoids can be stimulated by presenting the
stressor itself or via direct hormonal manipulations. While early life
stress exposure can have a large number of consequences, we empha-
sise here the effects on telomere dynamics during growth and develop-
ment, which thereby have the potential to produce long-term effects on
health and longevity. Telomeres are specialised areas of non-coding
DNAand associated proteins that occur at the ends of the chromosomes.
In vertebrates, the telomeres comprise tandem repeats of the nucleic
acid sequence TTAGGG, and the very end of the telomere is folded
back on itself to form a loop. Telomeres enable the cellmachinery to rec-
ognise these looped chromosome ends and also protect the coding se-
quences from the loss during cell division. This loss occurs because,
during DNA replication, the very end of the lagging DNA strand is not
completely replicated. Additional telomeric sequence can be lost be-
cause of oxidative damage to the nucleotides, which interrupts replica-
tion; the high guanine content of telomeres appears to make them
particularly vulnerable to oxidative damage. Once telomeres become
critically short, their function is impaired and, under normal circum-
stances, cells cease dividing and either die or remain in an altered
non-dividing state. Telomeres can be restored. In most animals, includ-
ing vertebrates, this involves the enzyme telomerase, which is variably
active in different tissue types. Inmany long-lived vertebrates, including
humans and many long-lived birds, telomerase is downregulated in
most somatic cells, thus limiting the cells' replicative potential. The
resulting cell loss, and the accumulation of senescent cells, are thought
to contribute to a decline in tissue and organ function with age. Follow-
ing this, telomere length and loss have been shown to relate to survival
[6,7], and several studies have found that early life telomere length is
the best predictor of longevity. What determines early life telomere
length, which has a significant heritable component and involves direct
and indirect environmental effects, is difficult to disentangle. An in-
creasing body of literature from both animal and human work is dem-
onstrating that stress exposure in early life can increase telomere loss,
and suggests that this is linked to glucocorticoid exposure [7,8]. Stress
experienced by parents not only affects their own health but can also
have long-lasting repercussions for their offspring. This can come
about because the offspring experience the same adverse environment
that is affecting their parents, or indirectly because of the environmental
conditions that the parents provide, either pre- or postnatally. To better
understand these connections, an experimental approach is critical, in
which, for example, effects due to the individual's early and adult envi-
ronment, or the parent and offspring environment, can be teased apart.
Longitudinal studies that follow individuals across their life course are
also important so that identifying long-term outcomes for individuals,
and age-related changes, is not confounded by certain phenotypes
beingmore or less likely to survive to old age. Such studies are very dif-
ficult to do in humans.

2. Prenatal effects

Several human and animal studies have established links between
stressful conditions during embryonic and foetal development and dis-
ease risk later in life. Thewell-documented effects that appeared in chil-
dren born during the Dutch ‘Hunger winter’ famine at the end ofWorld
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War II illustrate how serious and long lasting these effects can be.
Women who were pregnant during the famine experienced severe nu-
tritional and psychological stress, and the children they gave birth to
had increased incidence of disease decades after the famine had ended
[9]. While some of these effects were likely to have been caused by foe-
tal malnutrition, overexposure to glucocorticoids also seems to have
been involved. These two causes are of course interconnected.

Stress experienced by mothers can expose embryos to maternally
derived glucocorticoids through the placenta in mammals and through
their presence in eggs of oviparous species [10]. The transfer ofmaternal
glucocorticoids to offspringmight in part be an inevitable and detrimen-
tal result of poor environmental conditions. Indeed, prenatal stress
often has effects reminiscent of theprotracted and repeated stress expo-
sure mentioned in the introduction, including reduced birth weights
and growth rates, compromised immunity and increased disease rates,
and reduced survival [2]. However, if the mother can strategically con-
trol the transfer of glucocorticoids, maternal glucocorticoids might ben-
efit offspring by serving as a maternally mediated cue that alters
offspring phenotype in preparation for a stressful environment. For ex-
ample, in both birds and mammals, maternally derived glucocorticoids
can alter the responsiveness of the HPA axis, thereby influencing how
offspring respond to stressful situations later in life. Being more stress
reactive may be beneficial in a dangerous environment. Understanding
the extent to which changes in reactivity are adaptive, or the outcome a
physiological constraint imposed by system design, is an active area of
research and will depend in part on a particular species life history
strategy [11].

Stress in the prenatal environment has beenwidely studied inmam-
mals [5,12], where elevated maternal glucocorticoids can permanently
modify the development and subsequent function of theHPA axis in off-
spring. The direction of this modification is variable and depends not
only on the timing, duration, andmagnitude of glucocorticoid exposure
but also varies by species and sex [12]. For example, in guinea pigs
(Cavia porcellus), a single exposure to a 48-hr period of maternal stress
resulted in male offspring with reduced baseline and stress-induced
HPA activity, but females from the same litter exhibited elevated base-
line and stress-induced HPA activity. In another guinea pig study,
adult male offspring born to mothers exposed to stress on days 50–52
of gestation exhibited elevated baseline glucocorticoids, while those
born to mothers exposed to stress on gestational days 60–62 exhibited
normal baseline levels, but heightened stress-induced HPA activity.
These studies highlight the complex nature of HPA programming by
maternal glucocorticoids, which influence the developing foetus by
binding to specific glucocorticoid receptors. These processes are proba-
bly best understood in the ratmodel, wherematernal glucocorticoids in
developing rats reduce the number of glucocorticoid type I and II recep-
tors in the hippocampus [5]. This reduction results in impaired negative
feedback control of glucocorticoid secretion, which often produces
higher baseline levels and a prolonged duration of the stress response.
In two separate correlative studies on humans, mothers that reported
experiencing higher levels of stress during pregnancy produced off-
spring with shorter telomeres at birth [13] and in young adulthood
[14]. These human studies are necessarily correlative and include po-
tential biases associated with self-reporting, which makes it difficult to
determine causal relationships. Nevertheless, they establish an interest-
ing pattern that invites further study using experimental models.

Studying the effects of prenatal stress exposure in an oviparous sys-
temhas the advantage of allowing the characterisation of embryonic re-
sponses to increased glucocorticoid exposure independent of maternal
responses during embryo development. One of the inherent issues
with studying embryonic responses to glucocorticoids in a placental
system is that it is nearly impossible to increase embryonic exposure
to glucocorticoids without also alteringmaternal physiology. Therefore,
it is difficult to isolate the direct response of embryos to glucocorticoids
from indirect responses induced via changes in maternal physiology.
Additionally, an oviparous system has the added benefit of easier access
to the embryo, makingmanipulations of the embryonic endocrine envi-
ronment much simpler. In particular, avian oviparous systems are par-
ticularly attractive because the avian neuroendocrine system is very
similar to the mammalian system and thus responds in similar ways
to stressors. In addition, the extra embryonic membranes in birds
have remarkably similar functions to the extra embryonic membranes
that form part of the placenta and umbilical cords inmammals. Perhaps
most importantly, the two major mechanistic hypotheses thought to
underlie the association between maternal stress and postnatal effects
mentioned above (foetal malnutrition and overexposure to glucocorti-
coids) are extremely difficult tomanipulate independently inmammals
but can be done effectively in an oviparous model.

Even with these advantages, there have been relatively few studies
exploring the effects of prenatal glucocorticoid exposure on the devel-
opment of theHPA axis in birds.Work in Japanese quail (Coturnix japon-
ica) demonstrates that there can be complex sex-specific and
developmental stage-specific effects of prenatal glucocorticoid expo-
sure on subsequent stress responses [15]. Additionally, a recent study
in domestic chickens (Gallus domesticus) involved direct manipulation
of corticosterone levels, the primary avian glucocorticoid, in eggs. Juve-
nile chickens that had been exposed to experimentally increased corti-
costerone in ovo had a protracted decline in corticosterone after
exposure to a stressor compared to control juveniles. This experimen-
tally induced increase in exposure to corticosterone gave rise to higher
levels of oxidative stress and an over-representation of short telomeres
compared to the control birds [16]. In this experiment, differences in
postnatal care among individuals were controlled for because neither
control nor experimental chicks received any parental care, possible in
this highly precocial species. Therefore, these effects are due to expo-
sure of corticosterone while in ovo.

3. Postnatal effects

The effects of stress exposure in early postnatal life have been exper-
imentally studied in most detail in rats. Stressors have included mater-
nal separation, which gives rise to increased activity of the HPA axis and
reduced cognitive performance later in life. Repeated early handling by
humans, on the other hand, or high levels of maternal grooming reduce
stress sensitivity and improve aspects of cognitive performance. In
humans, harsh conditions in childhood are also associated with in-
creased stress reactivity [17]. How this links to long-term longevity
has, however, been little studied in an experimental setting in
mammals.

A recent experiment carried out in zebra finches (Taeniopygia
guttatamaximum lifespan in captivity ca 9 years, less in the wild) dem-
onstrates that there can be substantial lifespan penalties associatedwith
increased exposure to glucocorticoids. The corticosterone levels of
chicks were increased via a daily dose of corticosterone (within the nat-
ural range) between 12 and 28 days after hatching,which resulted in in-
creased reactivity of the HPA axis. A heightened stress responsiveness,
similar to that seen in the prenatalwork in chickens and quail, and post-
natal work in rats, was still detectable when the birds were young
adults. In addition, the birds were then all kept in similar conditions
and their longevity monitored over a 3-year period. The early life stress
exposure had no effect on survival of the birds as chicks, juveniles, or
young adults or on their reproductive performance. However, the effect
on longevitywas strikingwith those birds havingbeen exposed to stress
in early life showing a faster rate of ageing and substantially reduced
longevity; by the end of 3 years, around 85% of the control birds were
still alive compared with only just over 65% of those whose stress hor-
mone exposure in early life was increased [18]. A key aspect of this
study is that it was experimental—the animals were randomly allocated
to the different treatments, and after the early life hormone manipula-
tion, they all lived in the same, benign, environmental conditions. This
is important because there could be a number of potentially confound-
ing factors in non-experimental studies, such as a positive co-variation
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between the early and later life environment being stressful, the
exposure to early life stress not being random with some individuals
beingmore likely to experience such stressors. These factors are almost
impossible to control in studies in humans. This zebra finch study
illustrates that early life stress exposure can have substantial long-
term consequences; though whether these give the best fitness out-
come might also depend on the later life environment (see Section 4
below).

A similar effect to that described in zebra finches was found in
a field study using chicks of the European shag, a long-lived
seabird (Phalacrocorax aristotelis, maximum lifespan in the wild over
30 years). In this study, we also examined telomere length. The in-
creased exposure to glucocorticoids gave rise to increased telomere
loss during growth in these shag chicks, even though growth itself
was not affected by the experimental treatment [19]. This suggests
that increased telomere loss could be involved in the long-term effects
of early stress exposure on ageing and longevity. Socially induced stress
in early life can also have long-term consequences for physiology, be-
haviour, and telomere length. For example, in a study using wild
European starlings (Sturnus vulgaris, maximum recorded lifespan in
thewild 23 years), two chicks from broods of four weremoved to foster
broods such that they were then larger than, and dominant, over their
nest mates, and their two siblings were moved to other broods such
that they were smaller than, and subordinate to, their nest mates;
brood size in the foster nests was held constant at 4 chicks. While social
position did not affect growth, being a subordinate chick is known to be
stressful. We found that the chicks put into a subordinate position had
more telomere loss and hence shorter telomeres at the end of growth
than their biological siblings that had been placed in brood where
they were the dominant chicks [20]. In a similar study in which social
stress was manipulated in starling nestlings by manipulating brood
size, chicks that were at the bottom of the brood hierarchy showed
more telomere loss, an effect that was still evident when the birds
were fully grown and independent [21]. The behaviour of these birds
was examined when they were adults (6–14 months old); those that
had shown more telomere loss in early life (between days 4 and 55)
showed more impulsive behaviour, that is, they were unwilling to
wait for larger rewards, preferring a small reward now rather than a de-
layed but larger reward [22]. The results of these studies, which involve
direct effects of environmental conditions on many phenotypic traits,
show that early life social stress can influence later life behaviour and
induce potential reduced longevity as indicated by increased telomere
loss. Whether these behavioural changes represent an adaptive re-
sponse to a changing and stressful environment is not known, but
possible.

4. Hormetic effects

Asmentioned in the introduction, an optimally functioning stress re-
sponse system is essential to survival—not responding to imminent
danger is likely to lead to an early death. As shown in Sections 2 and
3, the level of stress exposure in early life can influence the sensitivity
of the HPA axis. A number of experimental studies have demonstrated
that exposure to a mild form of a stressor in early life can mean that
the response to stressors in adult life is more effective, a process termed
hormesis. But, why have this form of environmentally determined cali-
bration? The explanation might involve the advantages of minimising
unnecessary exposure to glucocorticoid hormones. Being highly reac-
tive in a challenging environment is beneficial, but if the environment
is not harsh or dangerous, more moderate responses may be appropri-
ate. This has clearly been demonstrated in an experiment in the zebra
finch. Some birds were exposed to short episodes of a mild level of
heat stress in early life while others were not exposed to heat stress.
Later in life, some birds from each group experienced a somewhat
stronger level of the stressor again, while others in each group did not.
The amount of oxidative damage that occurred when the stressor was
experienced in adulthood was reduced in the group that had the early
life priming, demonstrating their improved coping ability. Interestingly
however, when longevity was examined, those birds that had experi-
enced the stressor in early life, but did not experience it again later in
life, showed lower longevity than any other group[23]. Under these cir-
cumstances, having a mismatch between what the animal prepares it-
self for, and what it then experiences, is costly. It is possible therefore
that the survival effects shown in the zebra finch experiment discussed
in Section 3 might have been different had the adult environment been
more stressful. Such environmental mismatches are the basis of the
‘thrifty phenotype’ explanation of the poor health associated with
poor nutrition in early life. If early life conditions induces a ‘storage phe-
notype’ and this is followed by access to high-calorie food later, then
obesity and problems associated with metabolic syndrome can occur
[4].

5. Conclusions

Understanding the extent to which the developmental histories of
individuals influence their ability to cope with environmental chal-
lenges is an important area of research that spans diverse disciplines
and many levels of biological enquiry. We need to be able to link an
animal's current phenotype with its individual history. Experimental
studies in birds and mammals, and correlative studies in humans,
show that early life conditions have substantial long-term conse-
quences for individuals, and potentially also for their offspring. The sen-
sitivity of the HPA axis appears to be calibrated by early life experience,
and this is associatedwith substantial consequences for behaviour, telo-
mere loss, and longevity. We need to understand how and why organ-
isms react in particular ways to early life adversity, and whether these
responses represent adaptive adjustments where benefits outweigh
costs, or can be rendered harmful due to environmental mismatches.
An evolutionary perspective, in addition to mechanistic studies, has an
important contribution to make to such research. Working with, rather
than fighting against, our evolutionary history is more likely to reap
benefits.

Research directions

There are many areas of investigation of the effects of early life ad-
versity that remain to be explored. Here, we focussed on stress expo-
sure, the HPA axis, and longevity. However, other stressors commonly
encountered include those related to variability in food supply during
development, including the long-term effects of catch-up growth,
which could also involve the HPA axis and telomere dynamics. A partic-
ularly important question is whether responses to stress in early life are
different from those when stress is experienced in adult life. Are chang-
es more permanent when they occur during development? Are there
critical windows when stress reactivity is permanently altered? When
is stress beneficial, and are hormetic effects transferrable across stressor
types? It is also important to clarify our understanding of whether the
phenotypic adjustments we see to physiology and behaviour are adap-
tive or not, and whether they vary with species life histories and envi-
ronmental variability.
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