76 research outputs found

    Defect in proline synthesis: pyrroline-5-carboxylate reductase 1 deficiency leads to a complex clinical phenotype with collagen and elastin abnormalities

    Get PDF
    Pyrroline-5-carboxylate reductase 1 (PYCR1) catalyzes the last step in proline synthesis. Deficiency of PYCR1, caused by a defect in PYCR1, was recently described in patients with cutis laxa, intrauterine growth retardation, developmental dysplasia of the hips and mental retardation. In this paper, we describe additional six patients (ages ranging from 4 months to 55 years) from four Iranian families with clinical manifestations of a wrinkly skin disorder. All patients have distinct facial features comprising triangular face, loss of adipose tissue and thin pointed nose. Additional features are short stature, wrinkling over dorsum of hand and feet, visible veins over the chest and hyperextensible joints. Three of the patients from a large consanguineous family do not have mental retardation, while the remaining three patients from three unrelated families have mental and developmental delay. Mutation analysis revealed the presence of disease-causing variants in PYCR1, including a novel deletion of the entire PYCR1 gene in one family, and in each of the other patients the homozygous missense mutations c.616G > A (p.Gly206Arg), c.89T > A (p.Ile30Lys) and c.572G > A (p.Gly191Glu) respectively, the latter two of which are novel. Light- and electron microscopy investigations of skin biopsies showed smaller and fragmented elastic fibres, abnormal morphology of the mitochondria and their cristae, and slightly abnormal collagen fibril diameters with irregular outline and variable size. In conclusion, this study adds information on the natural course of PYCR1 deficiency and sheds light on the pathophysiology of this disorder. However, the exact pathogenesis of this new disorder and the role of proline in the development of the clinical phenotype remain to be fully explaine

    A human keratin 10 knockout causes recessive epidermolytic hyperkeratosis

    Get PDF
    Epidermolytic hyperkeratosis (EHK) is a blistering skin disease inherited as an autosomal-dominant trait. The disease is caused by genetic defects of the epidermal keratin K1 or K10, leading to an impaired tonofilament network of differentiating epidermal cells. Here, we describe for the first time a kindred with recessive inheritance of EHK. Sequence analysis revealed a homozygous nonsense mutation of the KRT10 gene in the affected family members, leading to a premature termination codon (p.Q434X), whereas the clinically unaffected consanguineous parents were both heterozygous carriers of the mutation. Semi-quantitative RT-PCR and western blot analysis demonstrated degradation of the KRT10 transcript, resulting in complete absence of keratin K10 protein in the epidermis and cultured keratinocytes of homozygous patients. This K10 null mutation leads to a severe phenotype, clinically resembling autosomal-dominant EHK, but differing in form and distribution of keratin aggregates on ultrastructural analysis. Strong induction of the wound-healing keratins K6, K16 and K17 was found in the suprabasal epidermis, which are not able to compensate for the lack of keratin 10. We demonstrate that a recessive mutation in KRT10 leading to a complete human K10 knockout can cause EHK. Identification of the heterogeneity of this disorder has a major impact for the accurate genetic counseling of patients and their families and also has implications for gene-therapy approache

    12R-lipoxygenase deficiency disrupts epidermal barrier function

    Get PDF
    12R-lipoxygenase (12R-LOX) and the epidermal LOX-3 (eLOX-3) constitute a novel LOX pathway involved in terminal differentiation in skin. This view is supported by recent studies showing that inactivating mutations in 12R-LOX and eLOX-3 are linked to the development of autosomal recessive congenital ichthyosis. We show that 12R-LOX deficiency in mice results in a severe impairment of skin barrier function. Loss of barrier function occurs without alterations in proliferation and stratified organization of the keratinocytes, but is associated with ultrastructural anomalies in the upper granular layer, suggesting perturbance of the assembly/extrusion of lamellar bodies. Cornified envelopes from skin of 12R-LOX–deficient mice show increased fragility. Lipid analysis demonstrates a disordered composition of ceramides, in particular a decrease of ester-bound ceramide species. Moreover, processing of profilaggrin to monomeric filaggrin is impaired

    Constitutional absence of epithelial integrin α3 impacts the composition of the cellular microenvironment of ILNEB keratinocytes

    Get PDF
    Integrin α3ÎČ1, a major epidermal adhesion receptor is critical for organization of the basement membrane during development and wound healing. Integrin α3 deficiency leads to interstitial lung disease, nephrotic syndrome and epidermolysis bullosa (ILNEB), an autosomal recessive multiorgan disease characterized by basement membrane abnormalities in skin, lung and kidney. The pathogenetic chains from ITGA3 mutation to tissue abnormalities are still unclear. Although integrin α3 was reported to regulate multiple extracellular proteins, the composition of the extracellular compartment of integrin α3-negative keratinocytes has not been resolved so far. In a comprehensive approach, quantitative proteomics of deposited extracellular matrix, conditioned cultured media as well as of the intracellular compartment of keratinocytes isolated from an ILNEB patient and from normal skin were performed. By mass spectrometry-based proteomics, 167 proteins corresponding to the GO terms “extracellular” and “cell adhesion”, or included in the “human matrisome” were identified in the deposited extracellular matrix, and 217 in the conditioned media of normal human keratinocytes. In the absence of integrin α3, 33% and 26% respectively were dysregulated. Dysregulated proteins were functionally related to integrin α3 or were known interaction partners. The results show that in the absence of integrin α3 ILNEB keratinocytes produce a fibronectin-rich microenvironment and make use of fibronectin-binding integrin subunits αv and α5. The most important results were validated in monolayer and organotypic coculture models. Finally, the in vivo relevance of the most dysregulated components was demonstrated by immunostainings of skin, kidney and lung samples of three ILNEB patients

    Vitamin D Status in Distinct Types of Ichthyosis: Importance of Genetic Type and Severity of Scaling

    Get PDF
    Data on vitamin D status of patients with inherited ichthyosis in Europe is scarce and unspecific concerning the genetic subtype. This study determined serum levels of 25-hydroxyvitamin D3 (25(OH)D3) in 87 patients with ichthyosis; 69 patients were additionally analysed for parathyroid hormone. Vitamin D deficiency was pronounced in keratinopathic ichthyosis (n = 17; median 25(OH)D3: 10.5 ng/ml), harlequin ichthyosis (n = 2;7.0 ng/ml) and rare syndromic subtypes (n = 3; 7.0 ng/ml). Vitamin D levels were reduced in TG1-proficient lamellar ichthyosis (n = 15; 8.9 ng/ml), TG1-deficient lamellar ichthyosis (n = 12; 11.7 ng/ml), congenital ichthyosiform erythroderma (n = 13; 12.4 ng/ml), Netherton syndrome (n = 7; 10.7 ng/ml) and X-linked ichthyosis (n = 8; 13.9 ng/ml). In ichthyosis vulgaris 25(OH)D3 levels were higher (n = 10; 19.7 ng/ml). Parathyroid hormone was elevated in 12 patients. Low 25(OH)D3 levels were associated with high severity of scaling (p = 0.03) implicating scaling as a risk factor for vitamin D deficiency. Thus, this study supports our recent guidelines for ichthyoses, which recommend screening for and substituting of vitamin D deficiency

    Monoallelic Mutations in the Translation Initiation Codon of KLHL24 Cause Skin Fragility

    Get PDF
    The genetic basis of epidermolysis bullosa, a group of genetic disorders characterized by the mechanically induced formation of skin blisters, is largely known, but a number of cases still remain genetically unsolved. Here, we used whole-exome and targeted sequencing to identify monoallelic mutations, c.1A>G and c.2T>C, in the translation initiation codon of the gene encoding kelch-like protein 24 (KLHL24) in 14 individuals with a distinct skin-fragility phenotype and skin cleavage within basal keratinocytes. Remarkably, mutation c.1A>G occurred de novo and was recurrent in families originating from different countries. The striking similarities of the clinical features of the affected individuals point to a unique and very specific pathomechanism. We showed that mutations in the translation initiation codon of KLHL24 lead to the usage of a downstreamtranslation initiation site with the same reading frame and formation of a truncated polypeptide. The pathobiology was examined in keratinocytes and fibroblasts of the affected individuals and via expression of mutant KLHL24, and we found mutant KLHL24 to be associated with abnormalities of intermediate filaments in keratinocytes and fibroblasts. In particular, KLHL24 mutations were associated with irregular and fragmented keratin 14. Recombinant overexpression of normal KLHL24 promoted keratin 14 degradation, whereas mutant KLHL24 showed less activity than the normal molecule. These findings identify KLHL24 mutations as a cause of skin fragility and identify a role for KLHL24 in maintaining the balance between intermediate filament stability and degradation required for skin integrity.Peer reviewe

    Deletion of a Pathogenic Mutation-Containing Exon of COL7A1 Allows Clonal Gene Editing Correction of RDEB Patient Epidermal Stem Cells

    Get PDF
    Recessive dystrophic epidermolysis bullosa is a severe skin fragility disease caused by loss of functional type VII collagen at the dermal-epidermal junction. A frameshift mutation in exon 80 of COL7A1 gene, c.6527insC, is highly prevalent in the Spanish patient population. We have implemented geneediting strategies for COL7A1 frame restoration by NHEJ-induced indels in epidermal stem cells from patients carrying this mutation. TALEN nucleases designed to cut within the COL7A1 exon 80 sequence were delivered to primary patient keratinocyte cultures by non-integrating viral vectors. After genotyping a large collection of vector-transduced patient keratinocyte clones with high proliferative potential, we identified a significant percentage of clones with COL7A1 reading frame recovery and Collagen VII protein expression. Skin equivalents generated with cells from a clone lacking exon 80 entirely were able to regenerate phenotypically normal human skin upon their grafting onto immunodeficient mice. These patientderived human skin grafts showed Collagen VII deposition at the basement membrane zone, formation of anchoring fibrils, and structural integrity when analyzed 12 weeks after grafting. Our data provide a proof-of-principle for recessive dystrophic epidermolysis bullosa treatment through ex vivo gene editing based on removal of pathogenic mutationcontaining, functionally expendable COL7A1 exons in patient epidermal stem cells.The study was mainly supported by DEBRA International—funded by DEBRA Austria (grant termed as Larcher 1). Additional funds come from Spanish grants SAF2013-43475-R and SAF2017-86810-R from the Ministry of Economy and Competitiveness and PI14/00931 and PI17/01747 from the Instituto de Salud Carlos III, all of them co-funded with European Regional Development Funds (ERDF)

    Clinically Relevant Correction of Recessive Dystrophic Epidermolysis Bullosa by Dual sgRNA CRISPR/Cas9-Mediated Gene Editing

    Get PDF
    Gene editing constitutes a novel approach for precisely correcting disease-causing gene mutations. Frameshift mutations inCOL7A1 causing recessive dystrophic epidermolysis bullosaare amenable to open reading frame restoration by non-homologous end joining repair-based approaches. Efficient targeteddeletion of faulty COL7A1 exons in polyclonal patient keratinocytes would enable the translation of this therapeutic strategy to the clinic. In this study, using a dual single-guide RNA(sgRNA)-guided Cas9 nuclease delivered as a ribonucleoprotein complex through electroporation, we have achieved veryefficient targeted deletion of COL7A1 exon 80 in recessivedystrophic epidermolysis bullosa (RDEB) patient keratinocytescarrying a highly prevalent frameshift mutation. This ex vivonon-viral approach rendered a large proportion of correctedcells producing a functional collagen VII variant. The effectivetargeting of the epidermal stem cell population enabled longterm regeneration of a properly adhesive skin upon graftingonto immunodeficient mice. A safety assessment by next-generation sequencing (NGS) analysis of potential off-target sitesdid not reveal any unintended nuclease activity. Our strategycould potentially be extended to a large number of COL7A1mutation-bearing exons within the long collagenous domainof this gene, opening the way to precision medicine for RDEB.The study was mainly supported by DEBRA International, funded by DEBRA Austria (grant termed as Larcher 1). Additional funds came from Spanish grants SAF2017-86810-R (to M.D.R.) and PI17/01747 (to F.L.) from the Ministry of Economy and Competitiveness and Instituto de Salud Carlos III, respectively, both co-funded with European Regional Development Funds (ERDF) ERA-NET E-RARE JTC 2017 (MutaEB) and CIBERER (grant termed as Murillas- TERAPIAS ER2017)

    Impaired proteoglycan glycosylation, elevated TGF-ÎČ signaling, and abnormal osteoblast differentiation as the basis for bone fragility in a mouse model for gerodermia osteodysplastica

    Get PDF
    <div><p>Gerodermia osteodysplastica (GO) is characterized by skin laxity and early-onset osteoporosis. <i>GORAB</i>, the responsible disease gene, encodes a small Golgi protein of poorly characterized function. To circumvent neonatal lethality of the <i>Gorab</i><sup><i>Null</i></sup> full knockout, <i>Gorab</i> was conditionally inactivated in mesenchymal progenitor cells (Prx1-cre), pre-osteoblasts (Runx2-cre), and late osteoblasts/osteocytes (Dmp1-cre), respectively. While in all three lines a reduction in trabecular bone density was evident, only <i>Gorab</i><sup>Prx1</sup> and <i>Gorab</i><sup>Runx2</sup> mutants showed dramatically thinned, porous cortical bone and spontaneous fractures. Collagen fibrils in the skin of <i>Gorab</i><sup><i>Null</i></sup> mutants and in bone of <i>Gorab</i><sup>Prx1</sup> mutants were disorganized, which was also seen in a bone biopsy from a GO patient. Measurement of glycosaminoglycan contents revealed a reduction of dermatan sulfate levels in skin and cartilage from <i>Gorab</i><sup><i>Null</i></sup> mutants. In bone from <i>Gorab</i><sup>Prx1</sup> mutants total glycosaminoglycan levels and the relative percentage of dermatan sulfate were both strongly diminished. Accordingly, the proteoglycans biglycan and decorin showed reduced glycanation. Also in cultured <i>GORAB</i>-deficient fibroblasts reduced decorin glycanation was evident. The Golgi compartment of these cells showed an accumulation of decorin, but reduced signals for dermatan sulfate. Moreover, we found elevated activation of TGF-ÎČ in <i>Gorab</i><sup>Prx1</sup> bone tissue leading to enhanced downstream signalling, which was reproduced in <i>GORAB</i>-deficient fibroblasts. Our data suggest that the loss of <i>Gorab</i> primarily perturbs pre-osteoblasts. GO may be regarded as a congenital disorder of glycosylation affecting proteoglycan synthesis due to delayed transport and impaired posttranslational modification in the Golgi compartment.</p></div
    • 

    corecore