92 research outputs found

    Charge ordering and structural distortions at low temperature in La<SUB>2-2x</SUB>Sr<SUB>1+2x</SUB>Mn₂O₇ (x=0.475 and 0.5)

    Get PDF
    In this paper we present x-ray scattering results of charge and orbital ordering in the bilayer manganite La222xSr112xMn2O7 with doping levels x50.5 and x50.475. Using high-energy x-ray scattering, the structural modulation due to the Jahn-Teller ordering and the charge ordering due to the Mn31/Mn41 pattern have been measured. Both the x50.5 and x50.475 samples are found to display charge and Jahn-Teller order. We have confirmed that the wave vectors of the Jahn-Teller order, charge order, and orbital order are QW 5(0.25,0.25,0), QW 5(0.5,0.5,0) and QW 5(0.25,0.25,0). The origin of these has been confirmed by resonant x-ray scattering in the vicinity of the Mn K edge using polarization analysis. Contrary to previous studies, the Jahn-Teller order is found to be not reentrant, but is found to reduce in intensity at temperatures below 140 K for both samples. Charge ordering was also detected in the x50.5 sample below this temperature

    Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4

    Get PDF
    Cu2ZnSnS4 (CZTS) is a technologically important and complex quaternary semiconductor and a highly promising material for the absorber layer in sustainable thin film solar cells. Its photovoltaic performance is currently limited by low open-circuit voltage, thought to be due to a range of point defects such as disorder between the copper and zinc lattice sites. This is the highest-resolution neutron diffraction study reported for CZTS, which unambiguously identifies the crystal symmetry and accurately quantifies precise values for the disorder on all cation symmetry sites as a function of temperature. Two samples of CZTS were fabricated by solid state reaction and their compositions were measured by inductively-coupled plasma mass spectroscopy, which identified significant tin loss during growth, leaving the samples Sn-poor, Cu-rich and Sn-poor, Zn-rich respectively. Both samples were found exclusively to adopt the tetragonal kesterite crystal structure with significant cation disorder, which is investigated in detail over the range 4–1275 K. Importantly, and in contrast to previous reports, the 2a Wyckoff site shows disorder equal to or greater than the 2c site. The order–disorder phase transition was observed at different temperatures for the two compositions, 489 and 501 K respectively, lower than previously reported. The kesterite–sphalerite transition was observed between 1250 and 1275 K for the Sn-poor, Cu-rich sample, significantly higher than previously reported. These results provide new insights into the high levels of disorder present in CZTS and confirm that composition and cation disorder have a significant effect on the phase transition mechanism. This work will enable the development of routes to the fabrication of higher-efficiency photovoltaic devices

    Experimental evidence of a change of exchange anisotropy sign with temperature in Zn-substituted Cu2OSeO3

    Get PDF
    We report small-angle neutron scattering from the conical state in a single crystal of Zn-substituted Cu 2 OSeO 3 . Using a 3D vector-field magnet to reorient the conical wave vector, our measurements show that the magnitude of the conical wave vector changes as a function of crystallographic direction. These changes are explained using the anisotropic exchange interaction (AEI) within the continuum model, whose magnitude in free-energy transitions from a maxima to a minima along the ⟨ 111 ⟩ and ⟨ 100 ⟩ crystallographic directions respectively. We further find that the AEI free-energy constant undergoes a change of sign from positive to negative with decreasing temperature. Unlike in the related compound FeGe, where similar behavior of the AEI induces a reorientation of the helical wave vector, we show that the zero field helical wave vector in ( Cu 0.98 Zn 0.02 ) 2 OSeO 3 remains along the ⟨ 100 ⟩ directions at all temperatures due to the competing fourth-order magnetocrystalline anisotropy becoming dominant at lower temperatures

    X-ray holographic imaging of magnetic surface spirals in FeGe lamellae

    Get PDF
    Isotropic helimagnets are known to host a diverse range of chiral magnetic states. In 2016, Rybakov et al., theorized the presence of a surface-pinned stacked spin spiral phase [F. N. Rybakov et al., New J. Phys. 18, 045002 (2016)], which has yet to be observed experimentally. The phase is characterized by surface spiral periods exceeding the host material's fundamental winding period L D . Here, we present experimental evidence for the observation of this state in lamellae of FeGe using resonant x-ray holographic imaging data and micromagnetic simulations. We find images of FeGe lamellae, exceeding a critical thickness of 300 nm ( 4.3 L D ), exhibit contrast modulations with a field-dependent periodicity of λ ≥ 1.4 L D , consistent with theoretical predictions of the stacked spiral state. The identification of this spiral state has significant implications for the stability of other coexisting spin textures, and will help complete our understanding of helimagnetic systems

    Stability and metastability of skyrmions in thin lamellae of Cu2OSeO3

    Get PDF
    We report small-angle x-ray scattering measurements of the skyrmion lattice in two 200-nm-thick Cu2OSeO3 lamellae aligned with the applied magnetic field parallel to the out of plane [110] or [100] crystallographic directions. Our measurements show that the equilibrium skyrmion phase in both samples is expanded significantly compared to bulk crystals, existing between approximately 30 and 50 K over a wide region of magnetic field. This skyrmion state is elliptically distorted at low fields for the [110] sample, and symmetric for the [100] sample, possibly due to crystalline anisotropy becoming more important at this sample thickness than it is in bulk samples. Furthermore, we find that a metastable skyrmion state can be observed at low temperature by field cooling through the equilibrium skyrmion pocket in both samples. In contrast to the behavior in bulk samples, the volume fraction of metastable skyrmions does not significantly depend on cooling rate. We show that a possible explanation for this is the change in the lowest temperature of the skyrmion state in this lamellae compared to bulk, without requiring different energetics of the skyrmion state

    Investigating the magnetic ground state of the skyrmion host material Cu2OSeO3 using long-wavelength neutron diffraction

    Get PDF
    We present long-wavelength neutron diffraction data measured on both single crystal and polycrystalline samples of the skyrmion host material Cu2OSeO3. We observe magnetic satellites around the (01⎯⎯1) diffraction peak not accessible to other techniques, and distinguish helical from conical spin textures in reciprocal space. Our measurements show that not only the field-polarised phase but also the helical ground state are made up of ferrimagnetic clusters instead of individual spins. These clusters are distorted Cu tetrahedra, where the spin on one Cu ion is anti-aligned with the spin on the three other Cu ions

    Position-dependent stability and lifetime of the skyrmion state in nickel-substituted Cu2OSeO3

    Get PDF
    We report spatially resolved small-angle neutron-scattering measurements of the conical and skyrmion states of a bulk single crystal of nickel-substituted Cu2OSeO3, with a nominal concentration of Ni of 14%. We observe a significant spatial dependence of the structure of these magnetic states, characterized by increased disorder and misalignment with respect to the applied field as we approach the edge of the sample. Remarkably, the edge skyrmion state is also characterized by an extended stability towards lower temperatures. Surprisingly, in the same region of the sample, the metastable skyrmion state did not show simple decay. Instead, only a fraction of the scattered intensity appeared to decay, and the intensity therefore did not approach zero during our measurements. We suggest that the increased local disorder and the coexistence of conical and skyrmion states, induced by demagnetization effects at the edge of the sample, are responsible for the increased stability of this skyrmion state. We also infer that the unclear metastable behavior of the skyrmion lattice at the edge of the sample is due to the local geometry of the sample, which induces coexistence of different skyrmion states whose lifetimes are superimposed and difficult to separate in the data

    Transverse field muon-spin rotation signature of the skyrmion-lattice phase in Cu2OSeO3

    Get PDF
    We present the results of transverse field (TF) muon-spin rotation (μ+SR) measurements on Cu2OSeO3, which has a skyrmion-lattice (SL) phase. We measure the response of the TF μ+SR signal in that phase along with the surrounding ones, and suggest how the phases might be distinguished using the results of these measurements. Dipole field simulations support the conclusion that the muon is sensitive to the SL via the TF line shape and, based on this interpretation, our measurements suggest that the SL is quasistatic on a time scale τ > 100 ns

    Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at √s=0.9 and 2.36 TeV

    Get PDF
    Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at root s = 0.9 and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 +/- 0.01 (stat.) +/- 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, dN(ch)/d eta vertical bar(vertical bar eta vertical bar and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date

    Structural aspects of high pressure vibrational spectroscopy

    No full text
    SIGLELD:D50569/84 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    • …
    corecore