156 research outputs found

    Effluent Organic Nitrogen (EON): Bioavailability and Photochemical and Salinity-Mediated Release

    Get PDF
    The goal of this study was to investigate three potential ways that the soluble organic nitrogen (N) fraction of wastewater treatment plant (WWTP) effluents, termed effluent organic N (EON), could contribute to coastal eutrophication - direct biological removal, photochemical release of labile compounds, and salinity-mediated release of ammonium (NH4+). Effluents from two WWTPs were used in the experiments. For the bioassays, EON was added to water from four salinities (similar to 0 to 30) collected from the James River (VA) in August 2008, and then concentrations of N and phosphorus compounds were measured periodically over 48 h. Bioassay results, based on changes in DON concentrations, indicate that some fraction of the EON was removed and that the degree of EON removal varied between effluents and with salinity. Further, we caution that bioassay results should be interpreted within a broad context of detailed information on chemical characterization. EON from both WWTPs was also photoreactive, with labile NH4+ and dissolved primary amines released during exposure to sunlight. We also present the first data that demonstrate that when EON is exposed to higher salinities, increasing amounts of NH4+ are released, further facilitating EON use as effluent transits from freshwater through estuaries to the coast

    Lethal Thermal Impact at Periphery of Pyroclastic Surges: Evidences at Pompeii

    Get PDF
    Background: The evaluation of mortality of pyroclastic surges and flows (PDCs) produced by explosive eruptions is a major goal in risk assessment and mitigation, particularly in distal reaches of flows that are often heavily urbanized. Pompeii and the nearby archaeological sites preserve the most complete set of evidence of the 79 AD catastrophic eruption recording its effects on structures and people. Methodology/Principal Findings: Here we investigate the causes of mortality in PDCs at Pompeii and surroundings on the bases of a multidisciplinary volcanological and bio-anthropological study. Field and laboratory study of the eruption products and victims merged with numerical simulations and experiments indicate that heat was the main cause of death of people, heretofore supposed to have died by ash suffocation. Our results show that exposure to at least 250uC hot surges at a distance of 10 kilometres from the vent was sufficient to cause instant death, even if people were sheltered within buildings. Despite the fact that impact force and exposure time to dusty gas declined toward PDCs periphery up to the survival conditions, lethal temperatures were maintained up to the PDCs extreme depositional limits. Conclusions/Significance: This evidence indicates that the risk in flow marginal zones could be underestimated by simply assuming that very thin distal deposits, resulting from PDCs with poor total particle load, correspond to negligible effects. Therefore our findings are essential for hazard plans development and for actions aimed to risk mitigation at Vesuvius an

    Prevalence and Factors Associated with Intestinal Parasitic Infection among Children in an Urban Slum of Karachi

    Get PDF
    Background:Intestinal parasitic infections are endemic worldwide and have been described as constituting the greatest single worldwide cause of illness and disease. Poverty, illiteracy, poor hygiene, lack of access to potable water and hot and humid tropical climate are the factors associated with intestinal parasitic infections. The study aimed to estimate prevalence and identify factors associated with intestinal parasitic infections among 1 to 5 years old children residing in an urban slum of Karachi Pakistan. Methods And PrincipalFindings:A cross sectional survey was conducted from February to June 2006 in Ghosia Colony Gulshan Town Karachi, Pakistan. A simple random sample of 350 children aged 1-5 years was collected. The study used structured pre-tested questionnaire, anthropometric tools and stool tests to obtain epidemiological and disease data. Data were analyzed using appropriate descriptive, univariate and multivariable logistic regression methods. The mean age of participants was 2.8 years and 53% were male. The proportions of wasted, stunted and underweight children were 10.4%, 58.9% and 32.7% respectively. The prevalence of Intestinal parasitic infections was estimated to be 52.8% (95% CI: 46.1, 59.4). Giardia lamblia was the most common parasite followed by Ascaris lumbricoides, Blastocystis hominis and Hymenolepis nana. About 43% children were infected with single parasite and 10% with multiple parasites. Age {Adjusted Odds Ratio (aOR) = 1.5, 95% CI: 1.1, 1.9}, living in rented households (aOR = 2.0, 95% CI: 1.0, 3.9) and history of excessive crying (aOR = 1.9, 95% CI: 1.0, 3.4) were significantly associated with intestinal parasitic infections.Conclusion:Intestinal parasites are highly prevalent in this setting and poverty was implicated as an important risk factor for infection. Effective poverty reduction programmes and promotion of deworming could reduce intestinal parasite carriage. There is a need for mass scale campaigns to create awareness about health and hygiene

    Search for sterile neutrino mixing in the MINOS long-baseline experiment

    Get PDF
    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L

    The role of P2X7 in pain and inflammation

    Get PDF
    The P2X7 purinoceptor is unique amongst the P2X receptor family in that its activation is able to stimulate the release of mature, biologically active interleukin-1β (IL-1β), as well as a variety of other proinflammatory cytokines. Coupled with the predominate localisation of this receptor to immunocytes of haemopoetic origin, this receptor is an obvious candidate to play a major and pivotal role in processes of pain and inflammation. Using genetically modified animals that lack the P2X7 receptor, several investigators have shown that these mice do indeed demonstrate a blunted inflammatory response, and fail to develop pain following both inflammatory and neuropathic insult. These animals also show altered cytokine production in response to inflammatory stimulus, which is far broader than merely modulation of IL-1β release. In this short article, we review the role of the P2X7 receptor in modulating the release of cytokines and other mediators, and discuss the findings made from P2X7 receptor-deficient animals. As well as highlighting outstanding questions regarding this intriguing receptor, we also speculate as to the potential therapeutic benefit of P2X7 receptor modulation

    Introducing global peat-specific temperature and pH calibrations based on brGDGT bacterial lipids

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from Bacteria and Archaea that are ubiquitous in a range of natural archives and especially abundant in peat. Previous work demonstrated that the distribution of bacterial branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors such as mean annual air temperature (MAAT) and soil pH. However, the influence of these parameters on brGDGT distributions in peat is largely unknown. Here we investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the world with a broad mean annual air temperature (−8 to 27 °C) and pH (3–8) range and present the first peat-specific brGDGT-based temperature and pH calibrations. Our results demonstrate that the degree of cyclisation of brGDGTs in peat is positively correlated with pH, pH = 2.49 x CBTpeat + 8.07 (n = 51, R2 65 = 0.58, RMSE = 0.8) and the degree of methylation of brGDGTs is positively correlated with MAAT, MAATpeat (°C) = 52.18 x MBT5me’ – 23.05 (n = 96, R2 67 = 0.76, RMSE = 4.7 °C). 3 These peat-specific calibrations are distinct from the available mineral soil calibrations. In light of the error in the temperature calibration (~ 4.7 °C), we urge caution in any application to reconstruct late Holocene climate variability, where the climatic signals are relatively small, and the duration of excursions could be brief. Instead, these proxies are well-suited to reconstruct large amplitude, longer-term shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit spanning the late glacial period (~15.2 kyr), we demonstrate that MAATpeat yields absolute temperatures and relative temperature changes that are consistent with those from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We conclude that there is clear potential to use brGDGTs in peats and lignites to reconstruct past terrestrial climateThis research was funded through the advanced ERC grant “the greenhouse earth system” (T-GRES, project reference 340923), awarded to RDP. All authors are part of the “T-GRES Peat Database collaborators” collective. RDP also acknowledges the Royal Society Wolfson Research Merit Award. We thank D. Atkinson for help with the sample preparation. We acknowledge support from Labex VOLTAIRE (ANR-10- 22 LABX-100-01). Peat from Patagonia and Tierra del Fuego were collected thanks to a Young Researcher Grant of the Agence National de la Recherche (ANR) to FDV, project ANR-2011-JS56-006-01 “PARAD” and with the help of Ramiro Lopez, Andrea Coronato and Veronica Pancotto (CADIC-CONICET, Ushuaia). Peat from Brazil was collected with the context of CNPq project 482815/2011-6. Samples from France (Frasne and La Guette) were collected thanks to the French Observatory of Peatlands. The Canadian peat was collected in the context of the NSERC-Discovery grant of L. Rochefort. Peats from China were obtained under a National Natural Science Foundation of China grant (No. 41372033), awarded to Y. Zheng

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    Spelling improvement through letter-sound and whole-word training in two multilingual Greek- and English- speaking children

    Get PDF
    Case studies of two children with spelling difficulty are reported. LK was multilingual and ED bilingual. A training programme that targeted phonic decoding (or sublexical) spelling processes was conducted with both children. Immediate and delayed post-training assessments showed improvement in spelling nonwords for LK but not for ED. Training that targeted whole word (or lexical) spelling processes was then conducted with ED. Improvement in spelling of irregular words (a marker for lexical spelling processes) was observed. Research into literacy difficulties with multilingual children is sparse, although multilingualism is increasingly widespread. Up to now theoretically based training studies have focused on monolingual children and results were promising. The present findings indicate that theoretically based training programmes for literacy difficulties can also be effective for multilingual children

    Carbon sequestration potential and physicochemical properties differ between wildfire charcoals and slow-pyrolysis biochars

    Get PDF
    Pyrogenic carbon (PyC), produced naturally (wildfire charcoal) and anthropogenically (biochar), is extensively studied due to its importance in several disciplines, including global climate dynamics, agronomy and paleosciences. Charcoal and biochar are commonly used as analogues for each other to infer respective carbon sequestration potentials, production conditions, and environmental roles and fates. The direct comparability of corresponding natural and anthropogenic PyC, however, has never been tested. Here we compared key physicochemical properties (elemental composition, δ13C and PAHs signatures, chemical recalcitrance, density and porosity) and carbon sequestration potentials of PyC materials formed from two identical feedstocks (pine forest floor and wood) under wildfire charring- and slow-pyrolysis conditions. Wildfire charcoals were formed under higher maximum temperatures and oxygen availabilities, but much shorter heating durations than slow-pyrolysis biochars, resulting in differing physicochemical properties. These differences are particularly relevant regarding their respective roles as carbon sinks, as even the wildfire charcoals formed at the highest temperatures had lower carbon sequestration potentials than most slow-pyrolysis biochars. Our results challenge the common notion that natural charcoal and biochar are well suited as proxies for each other, and suggest that biochar’s environmental residence time may be underestimated when based on natural charcoal as a proxy, and vice versa

    The C:N:P:S stoichiometry of soil organic matter

    Get PDF
    The formation and turnover of soil organic matter (SOM) includes the biogeochemical processing of the macronutrient elements nitrogen (N), phosphorus (P) and sulphur (S), which alters their stoichiometric relationships to carbon (C) and to each other. We sought patterns among soil organic C, N, P and S in data for c. 2000 globally distributed soil samples, covering all soil horizons. For non-peat soils, strong negative correlations (p < 0.001) were found between N:C, P:C and S:C ratios and % organic carbon (OC), showing that SOM of soils with low OC concentrations (high in mineral matter) is rich in N, P and S. The results can be described approximately with a simple mixing model in which nutrient-poor SOM (NPSOM) has N:C, P:C and S:C ratios of 0.039, 0.0011 and 0.0054, while nutrient-rich SOM (NRSOM) has corresponding ratios of 0.12, 0.016 and 0.016, so that P is especially enriched in NRSOM compared to NPSOM. The trends hold across a range of ecosystems, for topsoils, including O horizons, and subsoils, and across different soil classes. The major exception is that tropical soils tend to have low P:C ratios especially at low N:C. We suggest that NRSOM comprises compounds selected by their strong adsorption to mineral matter. The stoichiometric patterns established here offer a new quantitative framework for SOM classification and characterisation, and provide important constraints to dynamic soil and ecosystem models of carbon turnover and nutrient dynamics
    corecore