817 research outputs found

    Superconducting p-branes and Extremal Black Holes

    Get PDF
    In Einstein-Maxwell theory, magnetic flux lines are `expelled' from a black hole as extremality is approached, in the sense that the component of the field strength normal to the horizon goes to zero. Thus, extremal black holes are found to exhibit the sort of `Meissner effect' which is characteristic of superconducting media. We review some of the evidence for this effect, and do present new evidence for it using recently found black hole solutions in string theory and Kaluza-Klein theory. We also present some new solutions, which arise naturally in string theory, which are non-superconducting extremal black holes. We present a nice geometrical interpretation of these effects derived by looking carefully at the higher dimensional configurations from which the lower dimensional black hole solutions are obtained. We show that other extremal solitonic objects in string theory (such as p-branes) can also display superconducting properties. In particular, we argue that the relativistic London equation will hold on the worldvolume of `light' superconducting p-branes (which are embedded in flat space), and that minimally coupled zero modes will propagate in the adS factor of the near-horizon geometries of `heavy', or gravitating, superconducting p-branes.Comment: 22 pages, 2 figure

    Cosmological Implications of Neutrinos

    Get PDF
    The lectures describe several cosmological effects produced by neutrinos. Upper and lower cosmological limits on neutrino mass are derived. The role that neutrinos may play in formation of large scale structure of the universe is described and neutrino mass limits are presented. Effects of neutrinos on cosmological background radiation and on big bang nucleosynthesis are discussed. Limits on the number of neutrino flavors and mass/mixing are given.Comment: 41 page, 7 figures; lectures presented at ITEP Winter School, February, 2002; to be published in the Proceeding

    Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms

    Get PDF
    Clonal proliferation in myeloproliferative neoplasms (MPN) is driven by somatic mutations in JAK2, CALR or MPL, but the contribution of inherited factors is poorly characterized. Using a three-stage genome-wide association study of 3,437 MPN cases and 10,083 controls, we identify two SNPs with genome-wide significance in JAK2V617F-negative MPN: rs12339666 (JAK2; meta-analysis P=1.27 × 10−10) and rs2201862 (MECOM; meta-analysis P=1.96 × 10−9). Two additional SNPs, rs2736100 (TERT) and rs9376092 (HBS1L/MYB), achieve genome-wide significance when including JAK2V617F-positive cases. rs9376092 has a stronger effect in JAK2V617F-negative cases with CALR and/or MPL mutations (Breslow–Day P=4.5 × 10−7), whereas in JAK2V617F-positive cases rs9376092 associates with essential thrombocythemia (ET) rather than polycythemia vera (allelic χ2 P=7.3 × 10−7). Reduced MYB expression, previously linked to development of an ET-like disease in model systems, associates with rs9376092 in normal myeloid cells. These findings demonstrate that multiple germline variants predispose to MPN and link constitutional differences in MYB expression to disease phenotype

    Large-scale periodicity in the distribution of QSO absorption-line systems

    Full text link
    The spatial-temporal distribution of absorption-line systems (ALSs) observed in QSO spectra within the cosmological redshift interval z = 0.0--4.3 is investigated on the base of our updated catalog of absorption systems. We consider so called metallic systems including basically lines of heavy elements. The sample of the data displays regular variations (with amplitudes ~ 15 -- 20%) in the z-distribution of ALSs as well as in the eta-distribution, where eta is a dimensionless line-of-sight comoving distance, relatively to smoother dependences. The eta-distribution reveals the periodicity with period Delta eta = 0.036 +/- 0.002, which corresponds to a spatial characteristic scale (108 +/- 6) h(-1) Mpc or (alternatively) a temporal interval (350 +/- 20) h(-1) Myr for the LambdaCDM cosmological model. We discuss a possibility of a spatial interpretation of the results treating the pattern obtained as a trace of an order imprinted on the galaxy clustering in the early Universe.Comment: AASTeX, 13 pages, with 9 figures, Accepted for publication in Astrophysics & Space Scienc

    Long-Time Tails and Anomalous Slowing Down in the Relaxation of Spatially Inhomogeneous Excitations in Quantum Spin Chains

    Full text link
    Exact analytic calculations in spin-1/2 XY chains, show the presence of long-time tails in the asymptotic dynamics of spatially inhomogeneous excitations. The decay of inhomogeneities, for tt\to \infty , is given in the form of a power law (t/τQ)νQ (t/\tau_{Q}) ^{-\nu_{Q}} where the relaxation time τQ\tau_{Q} and the exponent νQ\nu_{Q} depend on the wave vector QQ, characterizing the spatial modulation of the initial excitation. We consider several variants of the XY model (dimerized, with staggered magnetic field, with bond alternation, and with isotropic and uniform interactions), that are grouped into two families, whether the energy spectrum has a gap or not. Once the initial condition is given, the non-equilibrium problem for the magnetization is solved in closed form, without any other assumption. The long-time behavior for tt\to \infty can be obtained systematically in a form of an asymptotic series through the stationary phase method. We found that gapped models show critical behavior with respect to QQ, in the sense that there exist critical values QcQ_{c}, where the relaxation time τQ\tau_{Q} diverges and the exponent νQ\nu_{Q} changes discontinuously. At those points, a slowing down of the relaxation process is induced, similarly to phenomena occurring near phase transitions. Long-lived excitations are identified as incommensurate spin density waves that emerge in systems undergoing the Peierls transition. In contrast, gapless models do not present the above anomalies as a function of the wave vector QQ.Comment: 25 pages, 2 postscript figures. Manuscript submitted to Physical Review

    Chemical Bonding in Solids

    Get PDF
    This chapter discusses the various classes of hydride compounds, with a special focus on saline and metallic hydrides as well as oxyhydrides. It includes the following topics: thermodynamic stability, crystal chemistry, synthesis, and physical properties. The chapter also highlights recent progress in understanding hydride ion mobility in alkaline earth hydrides. It further deals with hydride compounds and in particular those containing alkali, alkaline earth, and transition and rare earth metals. The saline hydrides, that is, AH and AeH2 (with A=Li, Na, K, Rb, and Cs; Ae=Mg, Ca, Sr, and Ba) are proper ionic materials, in which hydrogen is present as hydride anions, H−. Saline hydrides show many similarities with their halide analogues, especially concerning crystal and electronic structures and, perhaps to a lesser extent, physical attributes such as brittleness, hardness, and optical properties

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a β=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    Magnetic Field Amplification in Galaxy Clusters and its Simulation

    Get PDF
    We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
    corecore