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Abstract
The lectures describe several cosmological effects produced by neutrinos.

Upper and lower cosmological limits on neutrino mass are derived. The role
that neutrinos may play in formation of large scale structure of the universe is
described and neutrino mass limits are presented. Effects of neutrinos on cos-
mological background radiation and on big bang nucleosynthesis are discussed.
Limits on the number of neutrino flavors and mass/mixing are given.

1 Introduction

Of all known particles neutrinos have the weakest interactions and the smallest pos-

sibly nonvanishing, mass. Thanks to these properties neutrino is the second most

abundant particle in the universe after photons. According to observations the

number density of photons in cosmic microwave background radiation (CMBR) is

nγ = 412/cm3. In standard cosmology the number density of cosmic neutrinos can

be expressed through nγ as

nν + nν̄ = 3nγ/11 = 112/cm3 (1)

for any neutrino flavor (νe, νµ, and ντ ), assuming that there is an equal number of

neutrinos and antineutrinos.

Knowing the temperature of CMBR, Tγ = 2.728 K = 2.35 · 10−4 eV, one can

calculate the temperature of cosmic neutrinos:

Tν = (4/11)1/3Tγ = 1.95 K = 1.68 · 10−4eV (2)
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which is true if the neutrino mass is much smaller than their temperature, mν � Tν .

Otherwise the parameter Tν does not have the meaning of temperature; up to a

constant factor it can be understood as the inverse cosmological scale factor a(t).

Theory predicts that the spectrum of cosmic neutrinos, even massive ones, is given

by the almost equilibrium form:

fν = [ exp (p/T − ξ) + 1]−1 (3)

with the dimensionless chemical potential ξ = µ/T usually assumed to be negligi-

bly small. However one should note that in the expression above p is the neutrino

momentum, while in the equilibrium distribution there stands energy E =
√
m2

ν + p2.

There is a small correction to expression (3) of the order of (mν/Td)
2 where Td

is the neutrino decoupling temperature, Td ∼ MeV - this is the temperature when

neutrinos stopped to interact with primeval plasma. This correction appeared be-

cause at T > Td neutrinos were in equilibrium and their distribution depended on

E/T . Distribution of noninteracting neutrinos should be a function of pa(t). In

the case of instantaneous decoupling it turns into f(
√

(p/T )2 + (mν/Td)2), while for

non-instantaneous decoupling the dependence on mass could be different.

More details about cosmological neutrinos can be found e.g. in a recent review

paper [1].

Neutrinos are normally assumed to possess only usual weak interactions with

(V − A)-coupling to W and Z bosons. Correspondingly, if mν = 0, only left-handed

neutrinos, νL, i.e. those with spin anti-parallel to their momentum (and parallel for ν̄),

possess this interaction, while right-handed neutrinos, νR, are sterile. If mν 6= 0 right-

handed neutrinos would be also coupled to intermediate bosons with the strength sup-

pressed as (mν/E)2 and their cosmological number density would be always negligible

since their mass is bounded from above by a few eV see eqs. (13,14). If however neu-

trinos are mixed and massive (possibly with Majorana and Dirac masses) additional
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three sterile neutrinos could be abundantly produced in the early universe [2].

It is known from experiment that there are at least three neutrino families (or

flavors), νe, νµ, and ντ . From LEP data the number of light neutrino flavors with

mν < mZ/2 is indeed three:

Nν = 2.993± 0.011 (4)

One can find references to original experimental papers in the Review of Particle

Physics [3].

Direct experiment limits on neutrino masses are [3]

mνe < 3 eV, mνµ < 190 keV, mντ < 18.2 MeV (5)

As we will see below, cosmology allows to derive an upper limit on masses of all

neutrino flavors similar to that presented above for mνe .

There is a strong evidence in favor of neutrino oscillations. The best fit solutions

to the observed neutrino anomalies indicates maximum mixing between νµ and ντ

with mass difference about 3 × 10−3 eV2 (for explanation of atmospheric anomaly)

and also large mixing between νe and another active neutrino with mass difference

between 10−3 − 10−5 eV2 (for explanation of the deficit of solar neutrinos). If mass

differences are indeed so small then masses of all active neutrinos should be below 3 eV

and right-handed neutrinos would not be practically produced in particle interactions

in the standard theory, but as we noted below, they may be produced by oscillations.

Except for the above mentioned anomalies, and possibly LSND, neutrinos are

well described by the standard electroweak theory. For a recent review of neutrino

anomalies see e.g. ref. [4].

In what follows we discuss the bounds in neutrino masses that can be derived

from the magnitude of cosmic energy density and large scale structure of the universe

(sec. 3). Relation between cosmological neutrinos and CMBR is considered in sec.
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4. In section 5 we describe the role played by neutrinos in big bang nucleosynthesis

(BBN) and present the limits on the number of neutrino species and possible neutrino

degeneracy. Cosmological impact of neutrino oscillations is considered in sec. 6. The

body of the lectures is preceded by a brief presentation of basic cosmological facts

and essential observational data (section 2). These lectures present a shorter version

of the recent review paper [1] where one can find details and a long list or references,

many of which are omitted here because of lack of space and time.

2 A little about cosmology

The universe is known to expand according to the Hubble law:

V = Hr (6)

where V is the velocity of a distant object, r is the distance to it and H = ȧ/a is

the Hubble constant (or better to say, Hubble parameter, since it is not constant in

time). The present day value of H is given by

H = 100 h km/sec/Mpc (7)

with h = 0.7± 0.1. There are still indications for smaller and larger values of H but

we will not go into details here. One can find discussion of determination and values

of this and other cosmological parameters e.g. in recent papers [5].

The critical or closure energy density is proportional to H2 and is equal to:

ρc =
3H2m2

P l

8π
= 10.6 h2 keV/cm3 (8)

where mP l = 1.221 GeV is the Planck mass. Contributions of different forms of

matter into cosmological energy density is usually presented in terms of dimensionless

parameter Ωj = ρj/ρc. According to the data the dominant part of cosmological

energy density is given either by vacuum energy or by an unknown form of matter
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which has negative pressure, p < − ρ/3, and induces an accelerated expansion (anti-

gravity) at the present epoch. Its energy density is Ωvac ≈ 0.7. The total energy

density is close to the critical value so Ωtot ≈ 1. The contribution of the usual

baryonic matter, as determined from CMBR, is roughly Ωbh
2 = 0.022. This is is

consistent with determination of Ωb from BBN. The remaining 0.25 is believed to

be contributed by some unknown elementary particles (though, say, black holes are

not excluded) weakly interacting with photons - that’s why they are called dark or

invisible matter.

We are interested in a rather late period of the universe evolution when the tem-

perature was in MeV range or below down to the present time. For more details

about cosmology one can see any textbook or e.g. the recent reviews [1, 3]. Initially

all the particles in primary plasma, photons, e+e−-pairs, three flavors of neutrinos

and antineutrinos, and a little baryons were in strong thermal contact and hence had

equilibrium distributions (3) for fermions and similar expressions with minus sign in

front of 1 for bosons. Particle energy E should stand in this equation instead of p

but since majority of particles are relativistic, this difference is not important. The

energy density of massless particles in thermal equilibrium is given by the expression:

ρ = π2 g∗T 4/30 (9)

where g∗ = 10.75 includes contribution from all mentioned above particles except for

neglected baryons.

At that stage the energy density was almost precisely equal to the critical one,

with accuracy better than 10−15, the particles were relativistic (for T > me) with

equation of state p = ρ/3, where p is the pressure density, and thus:

H =
1

2t
=

(
8π3g∗

90

)1/2
T 2

mP l
= 5.443

(
g∗

10.75

)1/2 T 2

mP l
(10)

Cross-section of neutrino interactions behaves as σν ∼ G2
FE

2 and the reaction

rate is ṅ/n ∼ σνn ∼ G2
FT

5. Here n ∼ T 3 is the particle number density and GF =
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1.166 · 10−5 GeV2 is the Fermi coupling constant. Comparing reaction rate with

the Hubble expansion rate we can conclude that at temperatures above a few MeV

neutrinos should be in thermal equilibrium. To be more precise one should consider

kinetic equation governing neutrino distribution in cosmological background:

(∂t +Hp∂p) fν(t, p) = Hx∂xfν(x, y) = Icoll (11)

where p is the neutrino momentum, x = 1/a(t), y = pa/m0, a(t) is the cosmological

scale factor, and m0 is the normalization mass which we take as m0 = 1 MeV. On

relativistic stage when T ∼ 1/a is convenient to take x = m0/T and y = p/T .

For an estimate of neutrino decoupling temperature we neglect inverse reactions in

the collision integral and assume Boltzmann statistics. Each of the neglected effects

would enlarge the decoupling temperature by about 10-15%. In this approximation

the kinetic equation becomes

Hx
∂fν

fν∂x
= −DG2

F y

3π3x5
(12)

where D is a constant. Usually in the estimates of decoupling temperature one

takes thermally average value of neutrino momentum, 〈y〉 = 3. If we include all

possible reactions where neutrinos may participate then D = 80(1 + g2
L + g2

R) with

gL = sin2 θW ±1/2 and gR = sin2 θW where sin2 θW = 0.23 and the sign ′′+′′ stands for

νe and ′′−′′ stands for νµ,τ . Correspondingly the decoupling temperature determined

with respect to the total reaction rate would be T d
νe

= 1.34 MeV and T d
νµ,ντ

= 1.5

MeV for νe and νµ,τ respectively.

If we take into account only (ν − e)-interactions then D = 80(g2
L + g2

R) and the

decoupling of neutrinos from electron-positron (and photon) plasma would take place

at T d
νe

= 1.87 MeV and T d
νµ,ντ

= 3.12 MeV. Above T d the temperatures of photon-

electron-positron and neutrino plasma should be equal. In fact in the standard model

equality is maintained down to T ≈ me (see below).
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If only νν̄-annihilation into e+e− is taken into account then D = 16(g2
L + g2

R) and

the decoupling temperatures would be T d
νe

= 3.2 MeV and T d
νµ,ντ

= 5.34 MeV. Below

these temperatures the total number density of neutrinos in comoving volume could

not change.

When temperature dropped below electron mass, e+e−-pairs annihilated heating

photons but leaving neutrinos intact. As a result of this heating Tγ become higher

than Tν , eq. (2), and relative neutrino number density dropped with respect to pho-

tons as given by eq. (1) instead of earlier existed equilibrium ratio (nν +nν̄)/nγ = 3/4.

3 Cosmological limits on neutrino mass 1

3.1 Gerstein-Zeldovich limit

Since the number density of neutrinos at the present day is known, see eq. (1), it is

easy to calculate their contribution into cosmological energy density, ρν =
∑
mνanν ,

if neutrinos are stable. Demanding that ρν does not exceed the known value of energy

density of matter we obtain

∑
a

mνa < 95 eV Ωmh
2 ≈ 14 eV (13)

where the sum is taken over all light neutrino species, a = e, µ, τ . This limit was

originally derived by Gerstein and Zeldovich [7] in 1966. Six years later the result

was rediscovered by Cowsik and McClelland [8]. In the later paper, however, the

photon heating by e+e−-annihilation was not taken into account and both helicity

states of massive neutrinos were assumed to be equally abundant. Correspondingly

the resulting number density of relic neutrinos was overestimated by the factor 11/2.

If all active neutrinos are strongly mixed and their mass differences are very small

(see the end of sec. 1) then the limit (13) for an individual mass would be mν < 4.7

eV.
1More detailed discussion of such limits can be found in the recent reviews [1, 6].
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The bound (13) can be noticeably strengthened because neutrino may make only

sub-dominant contribution to Ωm. Arguments based on large scale structure forma-

tion (see below sec. 3.3) lead to the conclusion that Ων < Ωm/3 and correspondingly:

∑
a

mνa < 5 eV (14)

As noted above, in the case of small mass differences the mass bound for a single

neutrino would be mν < 1.7 eV.

3.2 Tremaine-Gunn limit

Quantum mechanics allows to obtain a lower limit on neutrino mass if neutrinos make

all dark matter in galaxies, especially in dwarf ones [9]. The derivation is based on

the fact that neutrinos are fermions and hence cannot have an arbitrary large number

density if their energy is bounded from above to allow formation of gravitationally

bound cluster. So to make dominant contribution into dark matter neutrino mass

should be larger than a certain value. Gravitationally bound neutrinos would be most

densely packed if they form degenerate gas with Fermi momentum pf = mνVF . The

Fermi velocity VF can be determined from the virial theorem:

V 2
F = GNMgal/Rgal (15)

where GN = 1/m2
P l is the Newton gravitational constant and Mgal and Rgal are

respectively the mass and radius of a galaxy.

The number density of degenerate neutrinos and equal number of antineutrinos is

nν = p3
F/(3π

2) and correspondingly their total mass in a galaxy is

Mν = 4πR3
galmνnν/3 (16)

According to observations galactic masses are dominated by invisible matter, so one

should expect that Mν ≈Mgal. From the equations above we find:

mν = 80 eV

(
300 km/sec

V

)1/4 (
1 kpc

Rgal

)1/2

(17)
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For dwarfs Rgal ≈ 1 kpc and V ≈ 100 km/sec. Correspondingly neutrinos, if they

constitute all dark matter in such galaxies, should be rather heavy, mν > 100 eV

in contradiction with Gerstein-Zeldovich limit. Thus we have to conclude that dark

matter in galaxies is dominated by some other unknown particles.

3.3 Neutrinos and large scale structure of the universe

Though, as we saw above, massive neutrinos cannot be dominant dark matter parti-

cles, they may play an essential role in large scale structure formation and evolution.

According to the accepted point of view cosmological structures have been developed

as a result of gravitational instability of initially small primordial density perturba-

tions. The latter presumably were generated at inflationary stage due to rising quan-

tum fluctuations of the inflaton field. For reviews and list of references see e.g. [10].

It is usually assumed that the spectrum of initial density perturbation has a simple

power law form, i.e. Fourier transform of the density perturbations

(δρ/ρ)in =
∫
d3k δ(k) (18)

behaves as δ2 ∼ kn. Moreover, the value of the exponent, n, is usually taken to be 1.

It corresponds to flat or Harrison-Zeldovich spectrum [11], as indicated by inflation

and consistent with observations.

With the known initial perturbations and equation of state of cosmological matter

one can calculate the shape of the evolved spectrum and to compare it with observa-

tions. This permits to determine the properties of the cosmological dark matter. In

the case of neutrinos density perturbations at small scales are efficiently erased as can

be seen from the following simple arguments. Neutrinos were decoupled from plasma

when they relativistic. The decoupling temperature is T d ∼ MeV, while mν ≤ 10

eV. Thus after decoupling neutrinos free streamed practically with the speed of light.

Since the flux of neutrinos from neutrino-rich regions should be larger than that from
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neutrino-poor regions, the inhomogeneities in neutrino distribution would smoothed

down at the scales smaller than neutrino free path, lfs = 2tnr. Here tnr is the cosmic

time from beginning till the moment when neutrinos became nonrelativistic. As we

mentioned above neutrinos propagate with the speed of light, so locally their path

is equal just to t and factor 2 came from the expansion of the universe. The mass

contained inside lfs is

Mfs =
4π(2tfs)

3

3
ρ = m2

P ltfs (19)

where we used for the cosmological energy density the critical value (8) with the

Hubble parameter H = 1/(2t), as given by eq. (10). Assuming that the universe was

dominated by relativistic matter (photons and three neutrino flavors) till neutrino

temperature dropped down to Tν = mν/3 and taking into account that Tν ≈ 0.7Tγ

(2) we find that the mass inside the free-streaming length is

Mfs = 0.1m3
P l/m

2
ν ≈ 1017M�(eV/mν)

2 (20)

where M� = 2 · 1033 g is the solar mass. This result is derived for the case of one

neutrino much heavier than the others. It would be modified in an evident way if

neutrinos are mass degenerate.

In such a theory the characteristic mass of the first formed objects, Mfs, is much

larger than the mass of large galaxies, Mgal ∼ 1012M� and dark matter with such

property is called hot dark matter (HDM). The dark matter particles for which the

characteristic mass is smaller than the galactic mass are called cold dark matter

(CDM) and the intermediate case is naturally called warm (WDM). In HDM model

of structure formation large clusters of galaxies should be formed first and smaller

structures could be created from larger ones later by their fragmentation. However

such process demands too much time and, moreover, the observations indicate that

smaller structures are older. Together with Tremaine-Gunn limit discussed in sec. 3.2,
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it “twice” excludes neutrinos as dominant part of dark matter in the universe. How-

ever mixed models with comparable amount of CDM and HDM are not excluded.

Though the mystery of cosmic conspiracy - why different particles have comparable

contribution to Ω - becomes in this case even more pronounced:

Ωvac ∼ (Ωm = ΩCDM + ΩHDM ) ∼ Ωb (21)

From the arguments presented here one can see that the larger is the fraction

of neutrinos in the total mass density of the universe the smaller should be power

in cosmic structures at small scales. This permits to strengthen the upper limit

on neutrino mass. Especially sensitive to neutrino mass are the structures at large

red-shift z because in neutrino dominated universe small structures should form late

and should not exist at large z. The neutrino impact on the structure formation

was analyzed in refs. [12] with the typical limits between 1 and 5 eV. More detailed

discussion and more references can be found in the review [1]. According to ref. [13]

Sloan Digital Sky Survey is potentially sensitive to mν ≤ 0.1 eV.

3.4 Cosmological limit on heavy neutrino mass

If there exists fourth lepton generation then the corresponding neutrino should be

heavier than mZ/2 = 45 GeV to surpass the LEP result (4). If these heavy neutrinos

are stable on cosmological time scale, τν ≥ tU ∼ 1010 years, then their mass density

may be cosmologically noticeable. Since such neutrinos are assumed to be very heavy

their number density at decoupling should be Boltzmann suppressed and they may

escape Gerstein-Zeldovich limit. First calculations of cosmological number density

of massive particles were performed by Zeldovich in 1965 [14]. However his result

contained a numerical error later corrected in ref. [15]. The same approach was

applied to the calculations of the number/energy density of relic heavy neutrinos

practically simultaneously in the papers [16] where it was found that the mass of
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heavy neutrino should be above 2.5 GeV to be cosmologically safe.

The number density of massive particle (neutrinos)s which survived annihilation

is inversely proportional to the annihilation cross-section σann and is approximately

given by the expression

nν/nγ = (σann vmνmP l)
−1 (22)

where v is the c.m. velocity of the annihilating particles and nγ is the number density

of photons in CMBR. For relatively light neutrinos, mν � mZ (which is not realistic

now), the annihilation cross-section is proportional to σ ∼ m2
ν and the energy density

of heavy relic neutrinos drops as 1/m2
ν . According to the calculations quoted above

ρν = ρc for mν = 2.5 GeV.

For higher masses mν > mW,Z , the cross-section started to drop as σ ∼ α2/m2
ν

and the cosmologically allowed window above 2.5 GeV becomes closed for mν > (3-5)

TeV [17]. However for mν > mW a new channel of annihilation becomes open,

νh + ν̄h →W+W− (23)

with the cross-section rising as mνh
[18]. The rise of the cross-section is related to

the rise of the Yukawa couplings of Higgs boson which is necessary to ensure a large

mass of νh. Correspondingly the excluded region above a few TeV becomes open

again. However the annihilation (23) proceeds only in one lowest partial wave and

the cross-section is restricted by the unitarity limit [19],

σJ < π(2J + 1)/p2. (24)

If one assumes that this limit is saturated then the large values mνh
about 100 TeV

would be forbidden. In reality the limit should be somewhat more restrictive because

it is natural to expect that the cross-section started to drop with rising mass of

neutrino before it reaches the unitarity bound. However it is very difficult, if possible

at all, to make any accurate calculations in this strong interaction regime.
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To summarize this discussion, the cosmic energy density, ρνh
, of heavy neutrinos

with the usual weak interaction is sketched in fig. (1). In the region of very small

masses the ratio of number densities nνh
/nγ does not depend upon the neutrino mass

and ρνh
linearly rises with mass. For larger masses σann ∼ m2

νh
and ρνh

∼ 1/m2
νh

. This

formally opens a window for mνh
above 2.5 GeV. A very deep minimum in ρνh

near

mνh
= mZ/2 is related to the resonance enhanced cross-section around Z-pole. Above

Z-pole the cross-section of ν̄hνh-annihilation into light fermions goes down with mass

as α2/m2
νh

(as in any normal weakly coupled gauge theory). The corresponding rise in

ρνh
is shown by a dashed line. However for mνh

> mW the contribution of the channel

ν̄hνh →W+W− leads to the rise of the cross-section with increasing neutrino mass as

σann ∼ α2m2
νh
/m4

W . This would allow keeping ρνh
well below ρc for all masses above

2.5 GeV. The behavior of ρνh
, with this effect of rising cross-section included, is shown

by the solid line up to mνh
= 1.5 TeV. Above that value it continues as a dashed line.

This rise with mass would break unitarity limit for partial wave amplitude when mνh

reaches 1.5 TeV (or 3 TeV for Majorana neutrino). If one takes the maximum value

of the S-wave cross-section permitted by unitarity (24), which scales as 1/m2
νh

, this

would give rise to ρνh
∼ m2

νh
and it crosses ρc at mνh

≈ 200 TeV. This behavior is

continued by the solid line above 1.5 TeV. However for mνh
≥ a few TeV the Yukawa

coupling of νh to the Higgs field becomes strong and no reliable calculations of the

annihilation cross-section has been done in this limit. Presumably the cross-section

is much smaller than the perturbative result and the cosmological bound for mνh
is

close to several TeV. This possible, though not certain, behavior is presented by the

dashed-dotted line. One should keep in mind, however, that the presented results for

the energy density could only be true if the temperature of the universe at an early

stage was higher than the heavy lepton mass.
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Figure 1: Cosmological energy density of massive neutrinos Ω = ρνh
/ρc as a function

of their mass measured in eV. The meaning of different lines is explained in the text.

4 Neutrinos and CMBR

Measurements of the angular fluctuations of CMBR, which are in continuous progress

now, also permit to obtain valuable information about cosmic neutrinos. The spec-

trum of fluctuations is presented in terms of Cl, the squares of the amplitudes in the

decomposition of the temperature fluctuations in terms of spherical harmonics:

∆T

T
=
∑
l,m

almYlm(θ, φ) (25)

and

Cl =
1

2l + 1

l∑
m=−l

|alm|2 (26)

A typical spectrum of fluctuations is presented in fig. 2(a) [20].
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Figure 2: (a) An example of an angular spectrum of CMB anisotropies with varying
number of neutrino species, kν = 2, 3, 4. (b) The ratio of Cl for kν = 2, 4 relative to
kν = 3 (from ref. [20])

For low l the amplitudes Cl are practically l-independent if the spectrum of initial

density perturbations is flat. At l ≈ 200 it has a pronounced peak and a few weaker

peaks at larger l. At l > 103 the fluctuations are strongly damped. A detailed

explanation of these spectral features can be found e.g. in the review [21]. These

peaks were produced by sound waves at the earlier stage, roughly speaking at the

moment of hydrogen recombination at T ≈ 3000 K. After this moment the universe

became transparent to CMB photons and the features existed at the moment of

recombination became “frozen” and are observed now in the sky. The first peak of

the largest amplitude corresponds to the “last” sound wave with the wave length
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equal to the horizon size at recombination divided by the speed of sound which for

relativistic plasma is cs = 1/
√

3:

λ1 = l
(rec)
hor /

√
3 (27)

The other peaks correspond to maximum compression or rarefaction at the same

moment and their phase is larger by nπ. Their amplitude is typically smaller because

corresponding waves was generated earlier and had more time to decay.

The physical scale l
(rec)
hor depends upon the expansion regime and, in particular,

upon the fraction of relativistic matter. Because of that the peak position is sensitive

to number of neutrino families and to neutrino mass. However this effect is rather

weak and to a much larger extent the position of the peak is determined by the

geometry of the universe because the angle at which we see l
(rec)
hor at the present

time depends upon the curvature of space. The data strongly support spatially flat

universe, Ωtot = 1 (for an analysis of previous and new data see e.g. ref. [22]).

More sensitive to the contribution of relativistic matter are heights of the peaks.

The point is that at non-relativistic or, in other words, at matter-dominated (MD)

stage gravitational potential of perturbations, ψ, remains constant. Indeed the po-

tential satisfies the Laplace equation:

(1/a2) ∆ψ ∼ δρ (28)

where a is the cosmological scale factor and δρ is the density contrast. It is known that

density perturbations at MD-stage rise as δρ/ρ ∼ a, while the total energy density

decreases as ρ ∼ 1/a3. Correspondingly

ψ ∼ a2ρ (δρ/ρ) = const (29)

If the cosmological expansion is not exactly non-relativistic due to presence of some

relativistic matter (neutrinos) the gravitational potential would be time depending,
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ψ = ψ(t), and the sound waves (which are induced by gravity) would be amplified -

the effect is analogous to parametric resonance amplification.

The heights of the peaks also depend upon the fraction of baryonic matter, Ωbh
2

since the latter makes the main contribution to the mass of acoustic oscillators, while

dark matter particles do not experience any pressure from photons of CMB. The

degeneracy of the impact of different cosmological parameters on the angular spec-

trum of CMBR makes determination of these parameters much more difficult and one

needs to invoke additional information from other pieces of astronomical data and/or

to wait till more precise measurement of all Cl in forthcoming experiments.

At the present day the accuracy of determination of the properties of cosmic

neutrinos from CMBR is not very good. In ref. [23] the upper limit on the number of

neutrino families was found Nν < 17 (95% confidence level) for the Hubble parameter

h = 0.72 ± 0.08 and Ωbh
2 = 0.020 ± 0.002. If these parameters are larger a larger

fraction of relativistic energy density would be allowed and more neutrino flavors

or other relativistic particles may exist. An additional account of the data on the

large scale structure [23] permitted to arrive to an interesting lower limit, Nν > 1.5.

Thus an independent indication (in addition to BBN) of non-vanishing cosmological

background of massless or very light neutrinos is obtained. Of course, these results

are not competitive with BBN (see sec. 5) at the present time. However they can be

such in near future.

If neutrinos are massive and contribute into hot component of dark matter, their

presence can be traced through CMBR [24]. Both effects mentioned above, a shift of

the peak positions and a change of their heights, manifest themselves depending on

the fraction of hot dark matter ΩHDM . Moreover the angular spectrum of CMBR is

sensitive also to the value of neutrino mass because the latter shifts teq, the moment

of the transition from radiation dominance to matter dominance. According to the

paper [24] the amplitude of angular fluctuations of CMBR is 5-10% larger for 400 <
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l < 1000 in the mixed hot-cold dark matter (HCDM) model with Ων = 0.2 − 0.3 in

comparison with the pure CDM model. An analysis of the data of ref. [25] on CMBR

angular spectrum was performed in the paper. [26] and the best-fit range of neutrino

mass was found:

mν = 0.04− 2.2 eV. (30)

An interesting effect which is related to neutrino physics in the early universe

when the latter was about 1 sec old and the temperature was in MeV range may be

observed in the forthcoming Planck mission if the expected accuracy at per cent level

is achieved. It is usually assumed that at that time neutrinos had an equilibrium

spectrum with the temperature which was initially equal to the temperature of pho-

tons, electrons, and positrons, while somewhat later at T < me neutrino temperature

dropped with respect to the photon one because e+e−-annihilation heated photons

but not neutrinos since neutrinos were already decoupled from electrons and positrons

(see eq. (2) and discussion at the end of sec. 2). However the decoupling was not

an instantaneous process and some residual interactions between e± and neutrinos

still existed at smaller temperatures. The annihilation of the hotter electron-positron

pairs, e+e− → ν̄ν, would heat up the neutrino component of the plasma and distort

the neutrino spectrum. The average neutrino heating under assumption that their

spectrum maintained equilibrium was estimated in ref. [27]. However, the approxi-

mation of the equilibrium spectrum is significantly violated and this assumption was

abolished in subsequent works. In the earlier papers [28, 29] kinetic equations were

approximately solved in Boltzmann approximation. In ref. [29] the effect was calcu-

lated numerically, while in ref. [28] an approximate analytical expression was derived.

After correction of the numerical factor 1/2 the calculated spectral distortion has the

form:

δfνe

fνe

≈ 3 · 10−4 E

T

(
11E

4T
− 3

)
(31)

18



Here δf = f −f (eq). The distortion of the spectra of νµ and ντ is approximately twice

weaker.

An exact numerical treatment of the problem (i.e. numerical solution of the

integro-differential kinetic equations without any simplifying approximations) was

conducted in the papers [30]-[32]. The accuracy of the calculations achieved in ref. [31]

was the highest and some difference with the results of two other papers can be pre-

scribed to a smaller number of grids in the collision integral [30] or to non-optimal

distribution of them [32] (see discussion of different methods of calculations in ref. [1]).

Recently calculations of the distortion of neutrino spectrum were done in ref. [33] in

a completely different way using expansion in interpolating polynomials in momen-

tum [34]. The results of this work perfectly agree with those of ref. [31].

One would expect that the distortion of neutrino spectrum at a per cent level would

result in a similar distortion in the primordial abundances of light elements. However,

this does not occur because an excess of energetic neutrinos over the equilibrium

spectrum which would give rise to a larger neutron-to-proton ratio and to a larger

mass fraction of primordial 4He is compensated by an increase of the total energy

density of νe which acts in the opposite direction diminishing the neutron-proton

freezing temperature and thus diminishing the n/p-ratio (see below sec. 5). The

net result of this distortion on 4He is at the level of 10−4. Still the observation of

this small deviation of neutrinos from equilibrium is not impossible. The corrections

discussed here and electromagnetic corrections of ref. [35] could be interpreted as a

change of Nν from 3 to 3.04. Planck mission may detect this effect but the concrete

features depend upon the ratio of neutrino mass to the recombination temperature

Trec = 3000 K = 0.26 eV.
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5 Neutrinos and BBN

5.1 BBN - brief description

Physical processes essential for BBN took place when the temperature of the primeval

plasma was in the interval from a few MeV down to 60-70 keV. According to eq. (10)

the characteristic time was respectively between 0.1 sec up to 200 sec. During this

period light elements 2H , 3He, 4He, and 7Li were synthesized. As one can see from

eq. (10) the universe cooling rate i.e. time-temperature relation depends on the

number of particle species in the primeval plasma, g∗. At BBN epoch the latter is

usually parameterized as

g∗ = 10.75 + (7/4)(Nν − 3) (32)

where the effective number of additional neutrinos ∆Nν = Nν−3 describes any form of

energy present during BBN. This parameterization is precise if a non-standard energy

has relativistic equation of state, p = ρ/3. In any other case ∆N becomes a function

of time and, moreover, the impact of additional energy on primordial abundances of

different light elements could be different from that created by the equivalent number

of massless neutrinos.

Building blocks for for creation of light elements were prepared in the weak inter-

action reactions:

n + νe ↔ p+ e−, (33)

n + e+ ↔ p+ ν̄ (34)

At high temperatures, T > 0.7 MeV, these reactions were fast in comparison with

the universe expansion rate H and the neutron-proton ratio followed the equilibrium

curve:

(n/p) = exp (−∆m/T ) exp (−ξνe) (35)
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where ∆m = 1.3 MeV is the neutron-proton mass difference and ξνe = µνe/T is di-

mensionless chemical potential of electronic neutrinos. At smaller T reactions (33,34)

became effectively frozen and the ratio n/p would be constant if not the slow neutron

decay with the life-time τn = 885.7± 0.8 sec [3].

The temperature of the freezing of the reactions (33,34), Tnp, is determined by

the competition of the reaction rate, Γ ∼ G2
FT

5 and the expansion rate, H ∼ √g∗ T 2.

Hence Tnp ∼ g∗1/6. Larger is g∗, larger is Tnp, and more neutrons would remain for

creation of light elements. On the other hand, the nucleosynthesis temperature, TNS ,

does not depend upon g∗ but the time when TNS is reached depends upon it. Larger is

g∗ shorter is this time. Correspondingly less neutrons would decay and more helium-4

and deuterium would be created. Thus a variation of g∗ acts in the same direction in

both phenomena. In particular, an increase of Nν by 1 leads to an increase of 4He

by about 5% as one can easily check using the publicly available BBN code [36].

Light elements begin to form from the primeval protons and neutrons when the

temperature reached the value

TNS =
0.064 MeV

1− 0.029 ln η10

(36)

where η10 is the ratio of baryon and photon number densities in units 1010. A very

small baryon-to-photon ratio makes nucleosynthesis temperature much lower than

typical nuclear binding energies. A few years ago η was determined from BBN itself

and now the measurements of the angular spectrum of CMBR (see sec. 4) permit to

find it independently. According to the latter η10 ≈ 5. This result is in a reasonable

agreement with determination of η10 from BBN. Once TNS is reached light elements

are very quickly formed and practically all neutrons, that survived to this moment,

were binded in 4He. The mass fraction of this element was about 25%, while relative

number of deuterium nuclei (as well as 3He) with respect to hydrogen is (a few)×10−5.

Amount of 7Li is about five orders of magnitude smaller. Primordial abundances of
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light elements as functions of η10 are presented in fig. 3.

Figure 3: Abundances of light elements 2H (by number) 4He (by mass), and 7Li (by
number) as functions of baryon-to-photon ratio η10 ≡ 1010nB/nγ .

A slight increase of 4He as a function of η can be mostly explained by an increase of

the nucleosynthesis temperature (36) with rising η. Correspondingly nucleosynthesis

started earlier and more neutrons survived decay. A strong decrease of the amount of

the produced deuterium is explained by a larger probability for 2H to meet a nucleon

and to proceed to 4He.

To summarize, we have seen that the primordial abundances depend upon:

1. Number density of baryons, η = nB/nγ.
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2. Weak interaction rate; this is usually expressed in terms of the neutron life-

time. It is interesting that a variation of weak interaction strength by a factor

of few would result either in complete absence of primordial 4He or in 100%

dominance of the latter (no hydrogen). In both cases stellar evolution would be

quite different from what we observe.

3. Cosmological energy density; non-standard contribution is usually parameter-

ized as additional number of neutrino species ∆Nν .

4. Neutrino degeneracy; degeneracies of νµ or ντ are equivalent to a non-zero ∆Nν ,

while degeneracy of νe has a much stronger (exponential) impact, see eq. (35),

on the abundances because νe directly enters the (n-p)-transformation reactions

(33,34) and can shift the (n/p)-ratio in either direction.

5.2 Role of neutrinos in BBN

The role that neutrinos played in BBN is already clear from the previous section. The

sensitivity of BBN to the number of neutrino families was first noticed by Hoyle and

Tayler in 1964 [37]. Two years later a similar statement was made by Peebles [38].

More detailed calculations were performed by Shvartsman [39] in 1969 who explicitly

stated that the data on light element abundances could be used to obtain a bound

on the number of neutrino flavors. Another 8 years later Steigman, Schramm, and

Gunn presented analysis of the effect with all light elements taken into account.

The dependence of the produced deuterium and helium-4 on the number of neu-

trino species for different values of the baryon number density η10 are presented in

figs. 4,5. At the present day the conclusion about the allowed number of neutrino

families varies from paper to paper between an optimistic constraint ∆Nν < 0.2 up

to a more cautious one ∆Nν < 1. The review of these results can be found e.g. in

refs. [41, 6].
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Figure 4: Mass fraction of 4He as a function of the number of massless neutrino
species. Different curves correspond to different values of the baryon-to-photon ratio
η10 ≡ 1010nB/nγ = 2, 3, 4, 5, 6 in order of increasing helium abundance.

If cosmological lepton asymmetry is non-vanishing then chemical potentials of

neutrinos are non-zero and their energy density is higher than the energy density of

non-degenerate neutrinos. Additional effective number of neutrino species in this case

is given by

∆N(ξ) =
15

7

∑
a


2

(
ξa
π

)2

+

(
ξa
π

)2

 (37)

where the sum is taken over all neutrino species a = e, µ, τ . If one extra family of

neutrinos is allowed by BBN then chemical potentials of νµ and ντ are bounded by

|ξµ,τ | < 1.5. For electronic neutrinos the limit is much stronger, |ξe| < 0.1 [42].
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Figure 5: Deuterium-to-hydrogen by number as a function of the number of massless
neutrino species. Notations are the same as in fig. (4).

If combined variation of all chemical potentials is allowed such that by some con-

spiracy an increase in production of light elements due to non-zero ξµ,τ is compensated

by a positive ξe then the limits would be less restrictive. Using additional data from

CMBR which allowed to fix η10 = 5 the authors of reference [43] obtained:

|ξµ,τ | < 2.6, −0.1 < ξe < 0.2 (38)

This bound disregards mixing between active neutrinos discussed below in sec. 6.3.

Account of the latter may make this limit considerably more restrictive, eq. (64).

Distortion of spectrum of νµ or ντ would have an impact on primordial abundances

only through a change in total energy density of these neutrinos and is equivalent to
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a change of Nν . However distortion of the spectrum of νe would have a stronger and

non-monotonic influence on the abundances. If there is an increase of neutrinos in

high energy tail of the spectrum then the frozen n/p-ratio would increase. Indeed an

excess of νe in comparison with the equilibrium amount would lead to a more efficient

destruction of neutrons in reaction (33), while the an excess of ν̄ would lead to more

efficient production of neutrons in reaction (34). If spectral distortion is symmetric

for particles and antiparticles then the second reaction would dominate because the

number density of protons is 6-7 times larger than the number density of neutrons.

It is worth noting that spectral distortion is not necessary charge symmetric as e.g.

could be in the case of resonant oscillations between active and sterile neutrinos.

If spectrum of νe has an additional power at low energy then the n/p ratio would

decrease because the reaction (34), where neutrons are created, is suppressed at low

energies due to threshold of 1.8 MeV.

If the spectrum is not distorted but the temperature of neutrinos is different from

the temperature of photons then for a larger Tνe the n/p-ratio would be smaller

because larger fraction of νe would shift the neutron freezing temperature, Tnp, to a

smaller value. Thus an increase of the energy density of νe has an opposite effect on

BBN than an increase of the energy density of νµ or ντ .

6 Neutrino oscillations in the early universe

6.1 Effects of medium

There are serious reasons to believe that the mass eigenstates of neutrinos νj (j =

1, 2, ...) do not coincide with interaction eigenstates, νa (a = e, µ, τ, ...). This mis-

match leads to oscillation phenomenon. The interaction and mass eigenstates are

expressed through each other by an unitary mixing matrix which in a simple case of
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two particle mixing (e.g. νe and νµ) has the form:

νe = ν1 cos θ + ν2 sin θ

νµ = −ν1 sin θ + ν2 cos θ (39)

If a certain neutrino flavor (interaction eigenstate) is produced in space point a then

the probability to observe such state in space point b oscillates as cos[(a− b) δm2/2p]

where δm2 = m2
2 −m2

1 is the mass difference squared of the mass eigenstates.

Oscillations in matter are modified by neutrino effective potential Veff which

up to energy factor coincides with refraction index of neutrinos in medium. The

Schroedinger equation for neutrino vector wave function in medium can be written

as

i∂tΨ = (Hm + Veff) Ψ (40)

where the matrix Hm is the free Hamiltonian which is diagonal in mass eigenstate

basis, while effective potential, Veff , is often (but not always, see below, sec. 6.3)

diagonal in interaction eigenstate basis.

Diagonal entries of Veff for an active neutrino were calculated in ref. [44]:

V
(aa)
eff = ±C1η

(a)GFT
3 + Ca

2

G2
FT

4E

α
(41)

where E is the neutrino energy, T is the plasma temperature, GF is the Fermi coupling

constant, α = 1/137 is the fine structure constant, and the signs “±” refer to anti-

neutrinos and neutrinos respectively According to ref. [44] the coefficients Cj are:

C1 ≈ 0.95, Ce
2 ≈ 0.61 and Cµ,τ

2 ≈ 0.17 (for T < mµ). These values are true in the

limit of thermal equilibrium, otherwise these coefficients are some integrals from the

distribution functions over momenta. The charge asymmetry of plasma is described

by the coefficients η(a) which are equal to

η(e) = 2ηνe + ηνµ + ηντ + ηe − ηn/2 (for νe) , (42)

η(µ) = 2ηνµ + ηνe + ηντ − ηn/2 (for νµ) , (43)
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and η(τ) for ντ is obtained from eq. (43) by the interchange µ ↔ τ . The individual

charge asymmetries, ηX , are defined as the ratio of the difference between particle-

antiparticle number densities to the number density of photons:

ηX = (NX −NX̄) /Nγ (44)

The first term came from thermal averaging of the time component of the cur-

rent with which neutrino interacts 〈Jt〉. This operator is odd with respect to charge

conjugation and has different signs for neutrinos and antineutrinos. The second term

appears because of non-locality of neutrino interaction related to exchange of inter-

mediate bosons.

The numerical values of these two terms in the effective potential as well as the

energy difference, δE = δm2/2E, which determines oscillation frequency in vacuum,

are

N (a) = C
(a)
2 G2

FT
4E/α = 5.59 · 10−20C

(a)
2

(
T

MeV

)5 ( E
3T

)
MeV (45)

A(a) = C1η
(a)GFT

3 = 1.166 · 10−21C1

(
η(a)

10−10

)(
T

MeV

)3

MeV (46)

δE =
δm2

2E
= 5 · 10−13

(
δm2

eV2

)(
MeV

E

)
MeV (47)

Description of oscillating neutrinos in the early universe in terms of wave function

is not adequate because the effects of breaking of coherence by neutrino annihilation

or non-forward scattering, as well as neutrino production are essential and one has to

use density matrix formalism [2, 45]. Equation for the evolution of the density matrix

has the form:

dρ

dt
= [H1, ρ]− i {H2, ρ} (48)

where H1 is the effective Hamiltonian calculated in the first order in GF (see eq.

(40) and H2 is the imaginary part of the effective Hamiltonian in the second order
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in GF . Square brackets mean commutator and curly ones mean anticommutator.

The last term turns into the usual collision integral in non-oscillating case. In many

problems this term is approximated as −γ(ρ − ρeq) where γ is the effective strength

of interactions and ρeq is proportional to unit matrix with the coefficient feq, the

latter being the equilibrium distribution function. Sometimes this approximation

reasonably well describes realistic situation but in many practically interesting cases

this is not so and more accurate form of the coherence breaking terms should be taken

(see e.g. ref. [1]).

6.2 Impact of active-sterile oscillations on BBN

All three mentioned above effects of neutrino influence on BBN may be present in

case of mixing of sterile and active neutrinos.

1. Production of νs by oscillations may be efficient enough to produce noticeable

contribution into total cosmological energy density making Nν > 3.

2. If MSW resonance transition[46] is possible a large lepton asymmetry may be

developed in the sector of active neutrinos and if it happens to be νe-asymmetry

it may result in a drastic change in primordial abundances of light elements.

3. Oscillations may distort energy spectrum of neutrinos because probability of

transformation depends upon their energy.

We will discuss here mostly the first phenomenon because of continuing contro-

versy in the literature (see refs. [1, 6]). Discussion and references to effects of spectral

distortion and asymmetry generation can be found in review [1].

Let us assume that there is mixing only between two neutrinos, one active and

one sterile, and the MSW resonance condition is not realized (this is so if νs is heavier

than its active partner, δm2 > 0). The density matrix is 2 × 2 and has 4 elements
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which satisfy the following kinetic equations:

ρ̇ss = s2 δE I (49)

ρ̇aa = −s2 δE I −
∫
dτ |Ael|2

[
ρaa(p1)f(p2)− ρ(p3)f(p4)

]

−
∫
dτ |Aann|2

[
ρaa(p1)ρ̄(p2)− f(p3)f(p4)

]
(50)

Ṙ = W I − (1/2)ΓR (51)

İ = −W R − (1/2)Γ I + (1/2)s2 δE(ρaa − ρss) (52)

where R and I are real and imaginary parts of the non-diagonal components of the

density matrix, ρas = R+iI, δE = δm2/2E, s2 = sin 2θ, c2 = cos 2θ, W = c2δE+Veff

(no-resonance condition means that W 6= 0), and Γ is the total interaction rate of

neutrinos with all other particles. In Boltzmann approximation it is given by the

expression (12) with D = 80(1+g2
L+g2

R). Fermi corrections are calculated in ref. [47].

They diminish the results by 10-15%. Integration in eq. (50) is taken over the phase

space of particles 2,3, and 4 that participate in the reaction 1 + 2↔ 3 + 4.

First we introduce new dimensionless variables, x and y, as defined after eq. (11).

After that the last two equations (51,52) can be solved analytically as:

ρas =
i

2

∫ x

0

dx1

H1x1
s2 δE (ρaa − ρss)1 exp

[
−
∫ x

x1

dx2

H2x2
(iW + Γ/2)2

]
(53)

Here sub-indices 1 and 2 mean that the corresponding functions are taken at x1 or at

x2.

One can estimate that the maximum production rate of sterile neutrinos takes

place at the temperature [48]

T νs
prod = (10− 15) (3/y)1/3 (δm2/eV2)1/6 MeV (54)

The first number above is for mixing of νs with νe, while the second one is for mixing

with νµ or ντ . Thus if the neutrino mass difference is not too small the production
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of sterile neutrinos is efficient when Γ � H . Hence the integrals in eq. (53) are

exponentially dominated by upper limits and can be easily taken:

ρas = R+ iI =
s2 δE

2W − iΓ
(ρaa − ρss) (55)

This is essentially the stationary point approximation which is valid if Γ is sufficiently

large.

Substituting this result into eq. (49) we find

Hx∂xρss =
Γ

4
(ρaa − ρss)

s2
2

(c22 + Veff/δE)
2
+ Γ2/4δE2

(56)

If we neglect ρss in comparison with ρaa and Γ2 in comparison with W 2 then we obtain

that the rate of production of sterile neutrinos is

Γs =
1

4
Γa sin2 2θm (57)

where θm is the effective mixing angle in matter. Its definition is evident from com-

parison of eqs. (56) and (57). This result is twice smaller than the estimates used in

earlier papers [48, 49, 50] and repeated in the recent review [6].

Correspondingly the limit on oscillations parameters becomes weaker:

(δm2
νeνs

/eV2) sin4 2θνeνs
vac = 3.16 · 10−5(g∗(T

νs
prod)/10.75)3(∆Nν)

2 (58)

(δm2
νµνs

/eV2) sin4 2θνµνs
vac = 1.74 · 10−5(g∗(T

νs
prod)/10.75)3(∆Nν)

2 (59)

If ∆N is not very small, then a better approximation in the bounds above would be

ln2(1−∆N) instead of (∆N)2.

Possibly these bounds would be even weaker if we take into account that oscilla-

tions conserve total number density of neutrinos and the latter can be changed only

by the neutrino annihilation into e+e−-pairs which froze at rather high temperature

(see discussion after eq. (12).
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In the resonance case a striking effect of a huge rise of lepton asymmetry of

active neutrinos may take place [51] leading to asymmetry close to 1. Due to small

fluctuations of baryon asymmetry this huge lepton asymmetry may strongly fluctuate

at cosmologically large scales [52]. After neutrino decoupling these inhomogeneities

would give rise to significant fluxes of neutrinos. The latter in turn could create

local electric currents with non-zero vorticity which may be sources of seed magnetic

fields [53]. Turbulent eddies generated by such flows could also generate gravitational

waves potentially observable in forthcoming LISA mission [54].

6.3 Oscillations between active neutrinos

Normally active neutrinos are in thermal equilibrium even at low temperatures and

oscillations between them do not lead to any change in their distribution. If how-

ever cosmological lepton asymmetry is non-zero and different for different neutrino

flavors then the oscillations may change it and lead to equality of all asymmetries.

Naively one would expect that in the case of large asymmetry the mixing angle in

matter is very strongly suppressed and neutrino flavor transformations are absent.

This is not the case however because of a large non-diagonal matrix elements of the

effective potential. This was first noticed in ref. [55] and discussed in detail in series

of papers [56]. A clear description these phenomena was presented recently in the

paper [57].

The kinetic equations used in the previous section can be easily modified to apply

to this case. Let us consider for definiteness oscillations between νe and νµ. One has

to take into account the self-interaction processes νeνµ ↔ νeνµ and νeν̄e ↔ νµν̄µ. The

refraction index is determined by the forward scattering amplitude and since νe and

νµ are considered to be different states of the same particle one has to include both

processes when there is a νe with momentum p1 in initial state and a νe or νµ with the

same momentum in the final state. The processes of forward transformation νe ↔ νµ
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give non-diagonal contributions to refraction index. Such transformations always

exist, even among non-oscillating particles, but only in the case of non-vanishing

mixing the non-diagonal terms in the effective potential become observable.

Now effective Hamiltonian has the form:

H
(e,µ)
int = δE

(
hee heµ

hµe hµµ

)
≡ δE

2
(h0 + σ h) (60)

where δE = δm2/2E and σ are Pauli matrices. The elements of the Hamiltonian

matrix (60) are expressed through the integrals over momenta of the distribution

functions of other leptons in the plasma and, in particular, of the elements of the

density matrix of oscillating neutrinos themselves. The structure of these terms is

essentially the same as those discussed above for mixing between active and scalar

neutrinos, see eq. (41). The contribution of self-interaction of neutrinos and antineu-

trinos also contains two terms. One originates from non-locality of weak interactions

and is symmetric with respect to charge conjugation:

h+ =
Vsym

2π2

∫
dyy3

(
P + P̄

)
. (61)

The second is proportional to the charge asymmetry in the plasma and equals

h− =
Vasym

2π2

∫
dyy2

(
P− P̄

)
(62)

An essential feature, specific for oscillations between active neutrinos, is the presence

of non-diagonal terms in the Hamiltonian (or in refraction index). In the case of

large lepton asymmetry in the sector of oscillating neutrinos, the asymmetric terms

in the Hamiltonian strongly dominate and, as a result, the suppression of mixing

angle in the medium, found for (νa − νs)-oscillations, disappears. To be more precise

initially the non-diagonal matrix elements are zero but they quickly rise, if the initial

asymmetry is not too high, and soon become very large.
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A large contribution of lepton asymmetry into effective potential permits to solve

kinetic equations for density matrix analytically and find [1]:

h′z = −1

2
hz

∫
d3y e−y s2

2γ

〈γ〉2 + c22
(63)

where γ = Γ/δE and brackets in the denominator mean averaging over neutrino

spectrum.

The solution of this equation is straightforward. It shows that oscillations are

not suppressed by matter effects in the presence of large lepton asymmetry. A de-

tailed numerical investigation of oscillations between three active neutrinos in the

early universe in presence of a large lepton asymmetry was carried out in the pa-

per [58]. Similar investigation both analytical and numerical was also performed in

the papers [59].

An analysis of the impact of oscillating neutrinos on BBN was performed for

the values of oscillation parameters favored by the solar and atmospheric neutrino

anomalies [58]. For the large mixing angle (LMA) solution flavor equilibrium is es-

tablished in the early universe and all chemical potentials ξe,µ,τ acquire equal values.

The results of the calculations for this case are presented in fig. 6. Since for these

values of the parameters, asymmetries in muonic and tauonic sectors are efficiently

transformed into electronic asymmetry, the BBN bounds on chemical potentials are

quite strong,

|ξa| < 0.07 (64)

for any flavor a = e, µ, τ .

This result does not destroy the mechanisms of generation of seed magnetic fields

and gravitational waves discussed at the end of sec. 6.2. Indeed, the maximum value

of chemical potential that could be generated by oscillations is 0.6 and may be factor

2-3 smaller depending on the mixing parameters. If shared between three neutrino
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Figure 6: Evolution of neutrino chemical potentials for LMA case, θ13 = 0, and initial
values ξe = ξτ = 0 and ξµ = −0.1. Solid and dotted curves are obtained with and
without neutrino self-interactions respectively.

species these lower values would not contradict the bound (64). Moreover, for a large

region of parameter space the essential rise of asymmetry takes place below neutron-

proton freezing temperature and does not produce a strong effect on BBN (see e.g.

numerical [60] or analytical [61] calculations).

For the LOW mixing angle solution the transformation of muon or tauon asym-

metries into electronic one is not so efficient. The transformation started at T < 1

MeV below interesting range for BBN. The results of calculations are presented in

fig. 7.

The results presented in these figures are valid for vanishing mixing angle θ13 (in

the standard parameterization of the 3 × 3-mixing matrix. An analysis of different

non-zero values of θ13 can be found in the paper [58].
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Figure 7: Evolution of the neutrino degeneracy parameters for LOW case and the
initial values ξe = ξτ = 0 and ξµ = −0.1. Notations are the same as in fig. 6.
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