597 research outputs found

    Automation and robotics considerations for a lunar base

    Get PDF
    An envisioned lunar outpost shares with other NASA missions many of the same criteria that have prompted the development of intelligent automation techniques with NASA. Because of increased radiation hazards, crew surface activities will probably be even more restricted than current extravehicular activity in low Earth orbit. Crew availability for routine and repetitive tasks will be at least as limited as that envisioned for the space station, particularly in the early phases of lunar development. Certain tasks are better suited to the untiring watchfulness of computers, such as the monitoring and diagnosis of multiple complex systems, and the perception and analysis of slowly developing faults in such systems. In addition, mounting costs and constrained budgets require that human resource requirements for ground control be minimized. This paper provides a glimpse of certain lunar base tasks as seen through the lens of automation and robotic (A&R) considerations. This can allow a more efficient focusing of research and development not only in A&R, but also in those technologies that will depend on A&R in the lunar environment

    Dynamics of monatomic liquids

    Full text link
    We present a theory of the dynamics of monatomic liquids built on two basic ideas: (1) The potential surface of the liquid contains three classes of intersecting nearly-harmonic valleys, one of which (the ``random'' class) vastly outnumbers the others and all whose members have the same depth and normal mode spectrum; and (2) the motion of particles in the liquid can be decomposed into oscillations in a single many-body valley, and nearly instantaneous inter-valley transitions called transits. We review the thermodynamic data which led to the theory, and we discuss the results of molecular dynamics (MD) simulations of sodium and Lennard-Jones argon which support the theory in more detail. Then we apply the theory to problems in equilibrium and nonequilibrium statistical mechanics, and we compare the results to experimental data and MD simulations. We also discuss our work in comparison with the QNM and INM research programs and suggest directions for future research.Comment: 53 pages, 16 figures. Differs from published version in using American English spelling and grammar (published version uses British English

    Observation of two new Ξb−\Xi_b^- baryon resonances

    Get PDF
    Two structures are observed close to the kinematic threshold in the Ξb0π−\Xi_b^0 \pi^- mass spectrum in a sample of proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb−1^{-1} recorded by the LHCb experiment. In the quark model, two baryonic resonances with quark content bdsbds are expected in this mass region: the spin-parity JP=12+J^P = \frac{1}{2}^+ and JP=32+J^P=\frac{3}{2}^+ states, denoted Ξbâ€Č−\Xi_b^{\prime -} and Ξb∗−\Xi_b^{*-}. Interpreting the structures as these resonances, we measure the mass differences and the width of the heavier state to be m(Ξbâ€Č−)−m(Ξb0)−m(π−)=3.653±0.018±0.006m(\Xi_b^{\prime -}) - m(\Xi_b^0) - m(\pi^{-}) = 3.653 \pm 0.018 \pm 0.006 MeV/c2/c^2, m(Ξb∗−)−m(Ξb0)−m(π−)=23.96±0.12±0.06m(\Xi_b^{*-}) - m(\Xi_b^0) - m(\pi^{-}) = 23.96 \pm 0.12 \pm 0.06 MeV/c2/c^2, Γ(Ξb∗−)=1.65±0.31±0.10\Gamma(\Xi_b^{*-}) = 1.65 \pm 0.31 \pm 0.10 MeV, where the first and second uncertainties are statistical and systematic, respectively. The width of the lighter state is consistent with zero, and we place an upper limit of Γ(Ξbâ€Č−)<0.08\Gamma(\Xi_b^{\prime -}) < 0.08 MeV at 95% confidence level. Relative production rates of these states are also reported.Comment: 17 pages, 2 figure

    Observation of excited Lambda_b0 baryons

    Get PDF
    Using pp collision data corresponding to 1.0 fb-1 integrated luminosity collected by the LHCb detector, two narrow states are observed in the Lambda_b0pi+pi- spectrum with masses 5911.97 +- 0.12(stat) +- 0.02(syst) +- 0.66(Lambda_b0 mass) MeV/c^2 and 5919.77 +- 0.08(stat) +- 0.02(syst) +- 0.66(Lambda_b0 mass) MeV/c^2. The significances of the observations are 5.2 and 10.2 standard deviations, respectively. These states are interpreted as the orbitally-excited Lambda_b0 baryons, Lambda_b*0(5912) and Lambda_b*0(5920).Comment: Replaced by version published in Phys. Rev. Lett, modified fit with better mass resolution treatmen

    Measurements of the branching fractions of B+→ppK+ decays

    Get PDF
    The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained

    Study of B−→DK−π+π−B^{-}\to DK^-\pi^+\pi^- and B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decays and determination of the CKM angle Îł\gamma

    Get PDF
    We report a study of the suppressed B−→DK−π+π−B^-\to DK^-\pi^+\pi^- and favored B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decays, where the neutral DD meson is detected through its decays to the K∓π±K^{\mp}\pi^{\pm} and CP-even K+K−K^+K^- and π+π−\pi^+\pi^- final states. The measurement is carried out using a proton-proton collision data sample collected by the LHCb experiment, corresponding to an integrated luminosity of 3.0~fb−1^{-1}. We observe the first significant signals in the CP-even final states of the DD meson for both the suppressed B−→DK−π+π−B^-\to DK^-\pi^+\pi^- and favored B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- modes, as well as in the doubly Cabibbo-suppressed D→K+π−D\to K^+\pi^- final state of the B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- decay. Evidence for the ADS suppressed decay B−→DK−π+π−B^{-}\to DK^-\pi^+\pi^-, with D→K+π−D\to K^+\pi^-, is also presented. From the observed yields in the B−→DK−π+π−B^-\to DK^-\pi^+\pi^-, B−→Dπ−π+π−B^-\to D\pi^-\pi^+\pi^- and their charge conjugate decay modes, we measure the value of the weak phase to be Îł=(74−19+20)o\gamma=(74^{+20}_{-19})^{\rm o}. This is one of the most precise single-measurement determinations of Îł\gamma to date.Comment: 22 pages, 9 figures; All figures and tables, along with any supplementary material and additional information, are available at https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-020.htm

    Differential branching fraction and angular analysis of the decay B0→K∗0ÎŒ+Ό−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 ÎŒ + ÎŒ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Strong constraints on the rare decays Bs -> mu+ mu- and B0 -> mu+ mu-

    Get PDF
    A search for Bs -> mu+ mu- and B0 -> mu+ mu- decays is performed using 1.0 fb^-1 of pp collision data collected at \sqrt{s}=7 TeV with the LHCb experiment at the Large Hadron Collider. For both decays the number of observed events is consistent with expectation from background and Standard Model signal predictions. Upper limits on the branching fractions are determined to be BR(Bs -> mu+ mu-) mu+ mu-) < 1.0 (0.81) x 10^-9 at 95% (90%) confidence level.Comment: 2+6 pages; 4 figures; Accepted for publication in Physical Review Letter

    Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^0 J\psi decay

    Get PDF
    Angular correlations in B+→X(3872)K+B^+\to X(3872) K^+ decays, with X(3872)→ρ0J/ψX(3872)\to \rho^0 J/\psi, ρ0→π+π−\rho^0\to\pi^+\pi^- and J/ψ→Ό+Ό−J/\psi \to\mu^+\mu^-, are used to measure orbital angular momentum contributions and to determine the JPCJ^{PC} value of the X(3872)X(3872) meson. The data correspond to an integrated luminosity of 3.0 fb−1^{-1} of proton-proton collisions collected with the LHCb detector. This determination, for the first time performed without assuming a value for the orbital angular momentum, confirms the quantum numbers to be JPC=1++J^{PC}=1^{++}. The X(3872)X(3872) is found to decay predominantly through S wave and an upper limit of 4%4\% at 95%95\% C.L. is set on the fraction of D wave.Comment: 16 pages, 4 figure

    Amplitude analysis of B0→Dˉ0K+π−B^0 \rightarrow \bar{D}^0 K^+ \pi^- decays

    Get PDF
    The Dalitz plot distribution of B0→Dˉ0K+π−B^0 \rightarrow \bar{D}^0 K^+ \pi^- decays is studied using a data sample corresponding to 3.0fb−13.0\rm{fb}^{-1} of pppp collision data recorded by the LHCb experiment during 2011 and 2012. The data are described by an amplitude model that contains contributions from intermediate K∗(892)0K^*(892)^0, K∗(1410)0K^*(1410)^0, K2∗(1430)0K^*_2(1430)^0 and D2∗(2460)−D^*_2(2460)^- resonances. The model also contains components to describe broad structures, including the K0∗(1430)0K^*_0(1430)^0 and D0∗(2400)−D^*_0(2400)^- resonances, in the KπK\pi S-wave and the DπD\pi S- and P-waves. The masses and widths of the D0∗(2400)−D^*_0(2400)^- and D2∗(2460)−D^*_2(2460)^- resonances are measured, as are the complex amplitudes and fit fractions for all components included in the amplitude model. The model obtained will be an integral part of a future determination of the angle Îł\gamma of the CKM quark mixing matrix using B0→DK+π−B^0 \rightarrow D K^+ \pi^- decays.Comment: 33 pages, 12 figures; updated for publicatio
    • 

    corecore