8 research outputs found

    Alien Registration- Harris, Mary K. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/24166/thumbnail.jp

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Alien Registration- Harris, Mary K. (Portland, Cumberland County)

    No full text
    https://digitalmaine.com/alien_docs/24166/thumbnail.jp

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3,4,5,6,7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    \u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution

    Get PDF
    The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu

    Pregnancy and neonatal outcomes of COVID -19: coreporting of common outcomes from PAN-COVID and AAP-SONPM registries

    No full text
    Objective Few large cohort studies have reported data on maternal, fetal, perinatal and neonatal outcomes associated with severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection in pregnancy. We report the outcome of infected pregnancies from a collaboration formed early during the pandemic between the investigators of two registries, the UK and Global Pregnancy and Neonatal outcomes in COVID‐19 (PAN‐COVID) study and the American Academy of Pediatrics (AAP) Section on Neonatal–Perinatal Medicine (SONPM) National Perinatal COVID‐19 Registry. Methods This was an analysis of data from the PAN‐COVID registry (1 January to 25 July 2020), which includes pregnancies with suspected or confirmed maternal SARS‐CoV‐2 infection at any stage in pregnancy, and the AAP‐SONPM National Perinatal COVID‐19 registry (4 April to 8 August 2020), which includes pregnancies with positive maternal testing for SARS‐CoV‐2 from 14 days before delivery to 3 days after delivery. The registries collected data on maternal, fetal, perinatal and neonatal outcomes. The PAN‐COVID results are presented overall for pregnancies with suspected or confirmed SARS‐CoV‐2 infection and separately in those with confirmed infection. Results We report on 4005 pregnant women with suspected or confirmed SARS‐CoV‐2 infection (1606 from PAN‐COVID and 2399 from AAP‐SONPM). For obstetric outcomes, in PAN‐COVID overall and in those with confirmed infection in PAN‐COVID and AAP‐SONPM, respectively, maternal death occurred in 0.5%, 0.5% and 0.2% of cases, early neonatal death in 0.2%, 0.3% and 0.3% of cases and stillbirth in 0.5%, 0.6% and 0.4% of cases. Delivery was preterm (< 37 weeks' gestation) in 12.0% of all women in PAN‐COVID, in 16.1% of those women with confirmed infection in PAN‐COVID and in 15.7% of women in AAP‐SONPM. Extreme preterm delivery (< 27 weeks' gestation) occurred in 0.5% of cases in PAN‐COVID and 0.3% in AAP‐SONPM. Neonatal SARS‐CoV‐2 infection was reported in 0.9% of all deliveries in PAN‐COVID overall, in 2.0% in those with confirmed infection in PAN‐COVID and in 1.8% in AAP‐SONPM; the proportions of neonates tested were 9.5%, 20.7% and 87.2%, respectively. The rates of a small‐for‐gestational‐age (SGA) neonate were 8.2% in PAN‐COVID overall, 9.7% in those with confirmed infection and 9.6% in AAP‐SONPM. Mean gestational‐age‐adjusted birth‐weight Z‐scores were −0.03 in PAN‐COVID and −0.18 in AAP‐SONPM. Conclusions The findings from the UK and USA registries of pregnancies with SARS‐CoV‐2 infection were remarkably concordant. Preterm delivery affected a higher proportion of women than expected based on historical and contemporaneous national data. The proportions of pregnancies affected by stillbirth, a SGA infant or early neonatal death were comparable to those in historical and contemporaneous UK and USA data. Although maternal death was uncommon, the rate was higher than expected based on UK and USA population data, which is likely explained by underascertainment of women affected by milder or asymptomatic infection in pregnancy in the PAN‐COVID study, although not in the AAP‐SONPM study. The data presented support strong guidance for enhanced precautions to prevent SARS‐CoV‐2 infection in pregnancy, particularly in the context of increased risks of preterm delivery and maternal mortality, and for priority vaccination of pregnant women and women planning pregnancy. Copyright © 2021 ISUOG. Published by John Wiley & Sons Ltd
    corecore