68 research outputs found

    Permafrost saline water and Early to mid-Holocene permafrost aggradation in Svalbard

    Get PDF
    Deglaciation in Svalbard was followed by seawater ingression and deposition of marine (deltaic) sediments in fjord valleys, while elastic rebound resulted in fast land uplift and the exposure of these sediments to the atmosphere, whereby the formation of epigenetic permafrost was initiated. This was then followed by the accumulation of aeolian sediments, with syngenetic permafrost formation. Permafrost was studied in the eastern Adventdalen valley, Svalbard, 3–4 km from the maximum up-valley reach of post-deglaciation seawater ingression, and its ground ice was analysed for its chemistry. While ground ice in the syngenetic part is basically fresh, the epigenetic part has a frozen freshwater–saline water interface (FSI), with chloride concentrations increasing from the top of the epigenetic part (at 5.5 m depth) to about 15 % that of seawater at 11 m depth. We applied a one-dimensional freezing model to examine the rate of top-down permafrost formation, which could be accommodated by the observed frozen FSI. The model examined permafrost development under different scenarios of mean average air temperature, water freezing temperature and degree of pore-water freezing. We found that even at the relatively high air temperatures of the Early to mid-Holocene, permafrost could aggrade quite fast down to 20 to 37 m (the whole sediment fill of 25 m at this location) within 200 years. This, in turn, allowed freezing and preservation of the freshwater–saline water interface despite the relatively fast rebound rate, which apparently resulted in an increase in topographic gradients toward the sea. The permafrost aggradation rate could also be enhanced due to non-complete pore-water freezing. We conclude that freezing must have started immediately after the exposure of the marine sediment to atmospheric conditions.</p

    Impact of glacial activity on the weathering of Hf isotopes – Observations from Southwest Greenland

    Get PDF
    Data for the modern oceans and their authigenic precipitates suggest incongruent release of hafnium (Hf) isotopes by chemical weathering of the continents. The fact that weathering during recent glacial periods is associated with more congruent release of Hf isotopes has led to the hypothesis that the incongruency may be controlled by retention of unradiogenic Hf by zircons, and that glacial grinding enhances release of Hf from zircons. Here we study the relationship between glacial weathering processes and Hf isotope compositions released to rivers fed by land-terminating glaciers of the Greenland Ice Sheet, as well as neighbouring non-glacial streams. The weathered source rocks in the studied area mostly consist of gneisses, but also include amphibolites of the same age (1.9 Ga). Hafnium and neodymium isotope compositions in catchment sediments and in the riverine suspended load are consistent with a predominantly gneissic source containing variable trace amounts of zircon and different abundances of hornblende, garnet and titanite. Glacially sourced rivers and non-glacial streams fed by precipitation and lakes show very unradiogenic Nd isotopic compositions, in a narrow range (ɛNd = −42.8 to −37.9). Hafnium isotopes, on the other hand, are much more radiogenic and variable, with ɛHf between −18.3 and −0.9 in glacial rivers, and even more radiogenic values of +15.8 to +46.3 in non-glacial streams. Although relatively unradiogenic Hf is released by glacial weathering, glacial rivers actually fall close to the seawater array in Hf-Nd isotope space and are not distinctly unradiogenic. Based on their abundance in rocks and sediments and their isotope compositions, different minerals contribute to the radiogenic Hf in solution with a decreasing relevance from garnet to titanite, hornblende and apatite. Neodymium isotopes preclude a much stronger representation of titanite, hornblende and apatite in solution, such as might result from differences in dissolution rates, than estimated from mineral abundance. The strong contrast in Hf isotope compositions between glacial rivers and non-glacial streams results mostly from different contributions from garnet and zircon, where zircon weathering is more efficient in the subglacial environment. A key difference between glacial and non-glacial waters is the water-rock interaction time. While glacial rivers receive continuous contributions from long residence time waters of distributed subglacial drainage systems, non-glacial streams are characterized by fast superficial drainage above the permafrost horizon. Therefore, the increased congruency in Hf isotope weathering in glacial systems could simply reflect the hydrological conditions at the base of the ice-sheet and glaciers, with zircon weathering contributions increasing with water-rock interaction time

    Current transport versus continental inputs in the eastern Indian Ocean: Radiogenic isotope signatures of clay size sediments

    Get PDF
    Analyses of radiogenic neodymium (Nd), strontium (Sr), and lead (Pb) isotope compositions of clay-sized detrital sediments allow detailed tracing of source areas of sediment supply and present and past transport of particles by water masses in the eastern Indian Ocean. Isotope signatures in surface sediments range from −21.5 (ɛNd), 0.8299 (87Sr/86Sr), and 19.89 (206Pb/204Pb) off northwest Australia to +0.7 (ɛNd), 0.7069 (87Sr/86Sr), and 17.44 (206Pb/204Pb) southwest of Java. The radiogenic isotope signatures primarily reflect petrographic characteristics of the surrounding continental bedrocks but are also influenced by weathering-induced grain size effects of Pb and Sr isotope systems with superimposed features that are caused by current transport of clay-sized particles, as evidenced off Australia where a peculiar isotopic signature characterizes sediments underlying the southward flowing Leeuwin Current and the northward flowing West Australian Current (WAC). Gravity core FR10/95-GC17 off west Australia recorded a major isotopic change from Last Glacial Maximum values of −10 (ɛNd), 0.745 (87Sr/86Sr), and 18.8 (206Pb/204Pb) to Holocene values of −22 (ɛNd), 0.8 (87Sr/86Sr), and 19.3 (206Pb/204Pb), which documents major climatically driven changes of the WAC and in local riverine particle supply from Australia during the past 20 kyr. In contrast, gravity core FR10/95-GC5 located below the present-day pathway of the Indonesian throughflow (ITF) shows a much smaller isotopic variability, indicating a relatively stable ITF hydrography over most of the past 92 kyr. Only the surface sediments differ significantly in their isotopic composition, indicating substantial changes in erosional sources attributed to a change of the current regime during the past 5 kyr

    Lead content and isotopic composition in submound and recent soils of the Volga upland

    Get PDF
    Literature data on the historical reconstructions of the atmospheric lead deposition in Europe and the isotopic composition of the ores that are potential sources of the anthropogenic lead in the atmospheric deposition in the lower Volga steppes during different time periods have been compiled. The effect of the increasing anthropogenic lead deposition recorded since the Bronze Age on the level of soil contamination has been investigated. For the first time paleosol buried under a burial mound of the Bronze Age has been used as a reference point to assess of the current contamination level. The contents and isotopic compositions of the mobile and total lead have been determined in submound paleosols of different ages and their recent remote and roadside analogues. An increase in the content and fraction of the mobile lead and a shift of its isotopic composition toward less radiogenic values (typical for lead from the recent anthropogenic sources) has been revealed when going from a Bronze-Age paleosol to a recent soil. In the Bronze-Age soil, the isotopic composition of the mobile lead is inherited from the parent rock to a greater extent than in the modern soils, where the lead is enriched with the less radiogenic component. The effect of the anthropogenic component is traced in the analysis of the mobile lead, but it is barely visible for the total lead. An exception is provided by the recent roadside soils characterized by increased contents and the significantly less radiogenic isotopic composition of the mobile and total lead

    Systematic Changes in Lead Isotopic Composition with Soil Age in Glacial Granitic Terrains

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155812/1/Harlavan_et_al_1998_Systematic_changes.pd

    Lead isotope systematics of granitoid weathering

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155787/1/Erel_et_al_1994_Lead_isotope.pd
    • 

    corecore