14 research outputs found

    The Challenge of Co-Religionist Commerce

    Get PDF
    This Article addresses the rise of co-religionist commerce in the United States—that is, the explosion of commercial dealings that take place between co-religionists who intend their transactions to achieve both commercial and religious objectives. To remain viable, coreligionist commerce requires all the legal support necessary to sustain all other commercial relationships. Contracts must be enforced, parties must be protected against torts, and disputes must be reliably adjudicated. Under current constitutional doctrine, co-religionist commercial agreements must be translated into secular terminology if they are to be judicially enforced. But many religious goods and services cannot be accurately translated without religious terms and structures. To address this translation problem, courts could make use of contextual tools of contract interpretation, thereby providing the necessary evidence to give meaning to co-religionist commercial agreements. However, contextual approaches to co-religionist commerce have been undermined by two current legal trends—one in constitutional law, the other in commercial law. The first is New Formalism, which discourages courts from looking to customary norms and relational principles to interpret commercial instruments. The second is what we call Establishment Clause Creep, which describes a growing judicial reticence to adjudicate disputes situated within a religious context. Together, these two legal developments prevent courts from using context to interpret and enforce co-religionist commercial agreements. This Article proposes that courts preserve co-religionist commerce with a limited embrace of contextualism. A thorough inquiry into context, which is discouraged by both New Formalist and many Establishment Clause doctrines, would allow courts to surmise parties\u27 intents and distinguish commercial from religious substance. Empowering the intent of co-religionist parties and limiting the doctrinal developments that threaten to undermine co-religionist commerce can secure marketplace dealings without intruding upon personal faith

    Toward Continuous Molecular Testing Using Gold-Coated Threads as Multi-Target Electrochemical Biosensors

    No full text
    Analytical systems based on isothermal nucleic acid amplification tests (NAATs) paired with electroanalytical detection enable cost-effective, sensitive, and specific digital pathogen detection for various in situ applications such as point-of-care medical diagnostics, food safety monitoring, and environmental surveillance. Self-assembled monolayers (SAMs) on gold surfaces are reliable platforms for electroanalytical DNA biosensors. However, the lack of automation and scalability often limits traditional chip-based systems. To address these challenges, we propose a continuous thread-based device that enables multiple electrochemical readings on a functionalized working electrode Au thread with a single connection point. We demonstrate the possibility of rolling the thread on a spool, which enables easy manipulation in a roll-to-roll architecture for high-throughput applications. As a proof of concept, we have demonstrated the detection of recombinase polymerase amplification (RPA) isothermally amplified DNA from the two toxic microalgae species Ostreopsis cf. ovata and Ostreopsis cf. siamensis by performing a sandwich hybridization assay (SHA) with electrochemical readout

    Simultaneous targeting of two ligand-binding sites on VEGFR2 using biparatopic Affibody molecules results in dramatically improved affinity

    No full text
    Angiogenesis plays an important role in cancer and ophthalmic disorders such as age-related macular degeneration and diabetic retinopathy. The vascular endothelial growth factor (VEGF) family and corresponding receptors are regulators of angiogenesis and have been much investigated as therapeutic targets. The aim of this work was to generate antagonistic VEGFR2-specific affinity proteins having adjustable pharmacokinetic properties allowing for either therapy or molecular imaging. Two antagonistic Affibody molecules that were cross-reactive for human and murine VEGFR2 were selected by phage and bacterial display. Surprisingly, although both binders independently blocked VEGF-A binding, competition assays revealed interaction with non-overlapping epitopes on the receptor. Biparatopic molecules, comprising the two Affibody domains, were hence engineered to potentially increase affinity even further through avidity. Moreover, an albumin-binding domain was included for half-life extension in future in vivo experiments. The best-performing of the biparatopic constructs demonstrated up to 180-fold slower dissociation than the monomers. The new Affibody constructs were also able to specifically target VEGFR2 on human cells, while simultaneously binding to albumin, as well as inhibit VEGF-induced signaling. In summary, we have generated small antagonistic biparatopic Affibody molecules with high affinity for VEGFR2, which have potential for both future therapeutic and diagnostic purposes in angiogenesis-related diseases

    Epigenetic Programming and Risk: The Birthplace of Cardiovascular Disease?

    No full text
    corecore