14 research outputs found

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Enhancing Grain Yield and Nitrogen Accumulation in Wheat Plants Grown under a Mediterranean Arid Environment by Foliar Spray with Papain-Released Whey Peptides

    No full text
    Due to their beneficial, stimulating impact on plant growth, productivity, and alleviating environmental stresses, protein hydrolysates have recently received increasing attention as a possible substitute. This investigation aimed to explore the effects of foliar application of papain-produced whey protein hydrolysates (WPH) on the yield attributes and nitrogen use efficiency (NUE) of soft wheat. Wheat plants were cultivated under a Mediterranean arid environment and received four soil nitrogen (N) fertilization levels with ammonium nitrate (145, 185, 215, and 250 kg N ha−1) and compared to control treatment and urea foliar application. WPH increased grain yield, yield attributes, and N accumulation in wheat plants. Partial productivity factors of applied nitrogen, as NUE indicators under relatively steady-state cropping systems, were also enhanced by WPH compared to control treatment. WPH significantly improved flag leaf area, spike number m−2, and grain yield compared to urea foliar application. Increasing the soil N fertilization level from 145 up to 215 kg N ha−1 was accompanied by significant increases in all yield traits and N accumulation measurements, except for the partial factor productivity of applied N, which decreased. A strong positive association was detected among grain and straw yields, their attributes, and total N uptake. Results highlighted the efficacy of WPH in increasing wheat yield and NUE

    Synergistic Impact of Melatonin and Putrescine Interaction in Mitigating Salinity Stress in Snap Bean Seedlings: Reduction of Oxidative Damage and Inhibition of Polyamine Catabolism

    No full text
    While the individual influences of melatonin (MT) and polyamines (PAs) have been widely studied under various abiotic stresses, little is known about their interaction under salinity stress. In the present study, salt stress applied by 50 mM of sodium chloride (NaCl) on snap bean seedlings has been supplemented with 20 μM of MT and/or 100 μM of putrescine (Put) (individually and in combination). The results indicated that under salinity stress, the combination of MT + Put achieved the highest significant increase in shoot fresh and dry weight, chlorophyll (Chl a), Chl a + b, carotenoids, total soluble sugars, proline, K, Ca, and cell membrane stability index (CMSI), as well as catalase (CAT) and peroxidase (POX) activities. This improvement was associated with an obvious decrease in Na, Na/K ratio, and oxidative damage as indicated by reducing leaf contents of methylglyoxal (MG), hydrogen peroxide (H2O2), and the rate of lipid peroxidation (malondialdehyde; MDA). Moreover, the combination of MT + Put demonstrated a significant decrease in the activities of diamine oxidase (DAO) and polyamine oxidase (PAO) leading to the reduction of the rate of polyamine oxidation. Meanwhile, MT applied individually gave the highest significant increase in leaf relative water content (RWC), Chl b, superoxide dismutase (SOD), and ascorbate peroxidase (APX). Conclusively, the combination treatment of MT + Put could decrease the degradation of polyamines and enhance tolerance to salinity stress in snap bean seedlings

    Exogenous Application of Nitric Oxide Mitigates Water Stress and Reduces Natural Viral Disease Incidence of Tomato Plants Subjected to Deficit Irrigation

    No full text
    The present work reveals the beneficial role of sodium nitroprusside (SNP; NO donor concentration: 50 and 100 µM) in mitigation of water stress accompanied by a reduction in viral disease incidence in tomato plants subjected to deficit irrigation. The plants were grown under two irrigation regimes: well-watered (WW; irrigated after the depletion of 55–60% of available soil water) and water deficit (WD; irrigated after the depletion of 85–90% of available soil water) in two seasons of 2018 and 2019. The results indicated that under water stress conditions, plant growth, chlorophyll, relative water content (RWC), and fruit yield were decreased. Conversely, water stress significantly increased the MDA, proline, soluble sugars, and antioxidant enzymes’ activities. Moreover, it was obvious a negligible increase in the fruit content from NO2 and NO3. Water-deficit stress, however, had a positive impact on reducing the percentage of viral disease (TMV and TYLCV) incidence on tomato plants. Similarly, SNP application in the form of foliar spray significantly reduced the disease incidence, the severity, and the relative concentrations of TMV and TYLCV in tomato plants raised under both WW and WD conditions. The treatment of SNP at 100 µM achieved better results and could be recommended to induce tomato plant tolerance to water stress. Thus, the present work highlights the role of NO (SNP) in the alleviation of water stress in tomato plants and subsequent reduction in viral disease incidence during deficit irrigation

    GABA: A Key Player in Drought Stress Resistance in Plants

    No full text
    γ-aminobutyric acid (GABA) is a non-protein amino acid involved in various physiological processes; it aids in the protection of plants against abiotic stresses, such as drought, heavy metals, and salinity. GABA tends to have a protective effect against drought stress in plants by increasing osmolytes and leaf turgor and reducing oxidative damage via antioxidant regulation. Guard cell GABA production is essential, as it may provide the benefits of reducing stomatal opening and transpiration and controlling the release of tonoplast-localized anion transporter, thus resulting in increased water-use efficiency and drought tolerance. We summarized a number of scientific reports on the role and mechanism of GABA-induced drought tolerance in plants. We also discussed existing insights regarding GABA’s metabolic and signaling functions used to increase plant tolerance to drought stress

    Postharvest Exogenous Melatonin Treatment of Table Grape Berry Enhances Quality and Maintains Bioactive Compounds during Refrigerated Storage

    No full text
    Table grape berries are classified as a perishable crop that deteriorates quickly after harvest. The application of melatonin after harvest was found to be effective for retarding senescence and slowing ripening. In the current study, we tested the influence of two melatonin concentrations (50 and 100 µmol) as a postharvest application on quality, bioactive compounds, and enzyme activities of grape berries cv “Crimson” stored at 0 ± 1 °C and 90% relative humidity (RH) for 35 days. Our results indicated that melatonin application extends the shelf-life of berries by reducing weight loss and maintaining total soluble solids (TSS), titratable acidity (TA), berry adherence strength, and firmness. Melatonin treatment also reduced pectin methyl esterase (PME) and polygalactouranase (PG) enzyme activities compared to the control. Moreover, O2•− and H2O2 rates in berries were reduced by high melatonin concentration. Moreover, peroxidase (POD) and catalase (CAT) enzyme activities were increased by melatonin application. Our findings suggested using melatonin postharvest to increase shelf life and maintain quality attributes during refrigerated storage, which could be advantageous on a large scale

    Roles of Exogenous α-Lipoic Acid and Cysteine in Mitigation of Drought Stress and Restoration of Grain Quality in Wheat

    No full text
    Cysteine (Cys) and α-lipoic acid (ALA) are naturally occurring antioxidants (sulfur-containing compounds) that can protect plants against a wide spectrum of environmental stresses. However, up to now, there are no conclusive data on their integrative roles in mitigation of drought stress in wheat plants. Here, we studied the influence of ALA at 0.02 mM (grain dipping pre-cultivation treatment) and Cys (25 and 50 ppm as a foliar application) under well watered and deficit irrigation (100% and 70% of recommended dose). The results showed that deficit irrigation markedly caused obvious cellular oxidative damage as indicated by elevating the malondialdehyde (MDA) and hydrogen peroxide content (H2O2). Moreover, water stressed plants exhibited multiple changes in physiological metabolism, which affected the quantitative and qualitative variables of grain yield. The enzymatic antioxidants, including superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POX) were improved by Cys application. SOD and APX had the same response when treated with ALA, but CAT and POX did not. Moreover, both studied molecules stimulated chlorophyll (Chl) and osmolytes’ biosynthesis. In contrast, the Chl a/b ratio was decreased, while flavonoids were not affected by either of the examined molecules. Interestingly, all above-mentioned changes were associated with an improvement in the scavenging capacity of reactive oxygen species (ROS), leaf relative water content (RWC), grain number, total grain yield, weight of 1000 kernels, gluten index, falling number, and alveographic parameters (P, W, and P/L values). Furthermore, heatmap plot analysis revealed several significant correlations between different studied parameters, which may explore the importance of applied Cys and ALA as effective compounds in wheat cultivation under water deficit conditions
    corecore