5,977 research outputs found

    The vertical distribution of ozone instantaneous radiative forcing from satellite and chemistry climate models

    Get PDF
    We evaluate the instantaneous radiative forcing (IRF) of tropospheric ozone predicted by four state-of-the-art global chemistry climate models (AM2-Chem, CAM-Chem, ECHAM5-MOZ, and GISS-PUCCINI) against ozone distribution observed from the NASA Tropospheric Emission Spectrometer (TES) during August 2006. The IRF is computed through the application of an observationally constrained instantaneous radiative forcing kernels (IRFK) to the difference between TES and model-predicted ozone. The IRFK represent the sensitivity of outgoing longwave radiation to the vertical and spatial distribution of ozone under all-sky condition. Through this technique, we find total tropospheric IRF biases from -0.4 to + 0.7 W/m(2) over large regions within the tropics and midlatitudes, due to ozone differences over the region in the lower and middle troposphere, enhanced by persistent bias in the upper troposphere-lower stratospheric region. The zonal mean biases also range from -30 to + 50 mW/m(2) for the models. However, the ensemble mean total tropospheric IRF bias is less than 0.2 W/m(2) within the entire troposphere

    The level-1 trigger for the SuperCDMS experiment at SNOLAB

    Get PDF
    The SuperCDMS SNOLAB dark matter search experiment aims to be sensitive to energy depositions down to Script O(1 eV). This imposes requirements on the resolution, signal efficiency, and noise rejection of the trigger system. To accomplish this, the SuperCDMS level-1 trigger system is implemented in an FPGA on a custom PCB. A time-domain optimal filter algorithm realized as a finite impulse response filter provides a baseline resolution of 0.38 times the standard deviation of the noise, σnσ_{n}, and a 99.9% trigger efficiency for signal amplitudes of 1.1 σnσ_{n} in typical noise conditions. Embedded in a modular architecture, flexible trigger logic enables reliable triggering and vetoing in a dead-time-free manner for a variety of purposes and run conditions. The trigger architecture and performance are detailed in this article

    Adiabatic compression and indirect detection of supersymmetric dark matter

    Full text link
    Recent developments in the modelling of the dark matter distribution in our Galaxy point out the necessity to consider some physical processes to satisfy observational data. In particular, models with adiabatic compression, which include the effect of the baryonic gas in the halo, increase significantly the dark matter density in the central region of the Milky Way. On the other hand, the non-universality in scalar and gaugino sectors of supergravity models can also increase significantly the neutralino annihilation cross section. We show that the combination of both effects gives rise to a gamma-ray flux arising from the Galactic Center largely reachable by future experiments like GLAST. We also analyse in this framework the EGRET excess data above 1 GeV, as well as the recent data from CANGAROO and HESS. The analysis has been carried out imposing the most recent experimental constraints, such as the lower bound on the Higgs mass, the \bsg branching ratio, and the muon g2g-2. In addition, the recently improved upper bound on B(Bsμ+μ)B(B_s \to \mu^+ \mu^-) has also been taken into account. The astrophysical (WMAP) bounds on the dark matter density have also been imposed on the theoretical computation of the relic neutralino density through thermal production.Comment: 32 pages, 11 figures, final version to appear in JCA

    PainDroid: An android-based virtual reality application for pain assessment

    Get PDF
    Earlier studies in the field of pain research suggest that little efficient intervention currently exists in response to the exponential increase in the prevalence of pain. In this paper, we present an Android application (PainDroid) with multimodal functionality that could be enhanced with Virtual Reality (VR) technology, which has been designed for the purpose of improving the assessment of this notoriously difficult medical concern. Pain- Droid has been evaluated for its usability and acceptability with a pilot group of potential users and clinicians, with initial results suggesting that it can be an effective and usable tool for improving the assessment of pain. Participant experiences indicated that the application was easy to use and the potential of the application was similarly appreciated by the clinicians involved in the evaluation. Our findings may be of considerable interest to healthcare providers, policy makers, and other parties that might be actively involved in the area of pain and VR research

    An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory

    Get PDF
    We present the results and methodology of a search for neutrinos produced in the decay of charged pions created in interactions between protons and gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the entire sky. This three-year search is the first in IceCube for shower-like Cherenkov light patterns from electron, muon, and tau neutrinos correlated with GRBs. We detect five low-significance events correlated with five GRBs. These events are consistent with the background expectation from atmospheric muons and neutrinos. The results of this search in combination with those of IceCube's four years of searches for track-like Cherenkov light patterns from muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that tightly constrain current models of neutrino and ultra high energy cosmic ray production in GRB fireballs.Comment: 33 pages, 14 figures; minor changes made to match published version in the Astrophysical Journal, 2016 June 2

    Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry

    Get PDF
    We present an improved event-level likelihood formalism for including neutrino telescope data in global fits to new physics. We derive limits on spin-dependent dark matter-proton scattering by employing the new formalism in a re-analysis of data from the 79-string IceCube search for dark matter annihilation in the Sun, including explicit energy information for each event. The new analysis excludes a number of models in the weak-scale minimal supersymmetric standard model (MSSM) for the first time. This work is accompanied by the public release of the 79-string IceCube data, as well as an associated computer code for applying the new likelihood to arbitrary dark matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small updates to address JCAP referee repor

    Search for CP Violation in the Decay Z -> b (b bar) g

    Full text link
    About three million hadronic decays of the Z collected by ALEPH in the years 1991-1994 are used to search for anomalous CP violation beyond the Standard Model in the decay Z -> b \bar{b} g. The study is performed by analyzing angular correlations between the two quarks and the gluon in three-jet events and by measuring the differential two-jet rate. No signal of CP violation is found. For the combinations of anomalous CP violating couplings, h^b=h^AbgVbh^VbgAb{\hat{h}}_b = {\hat{h}}_{Ab}g_{Vb}-{\hat{h}}_{Vb}g_{Ab} and hb=h^Vb2+h^Ab2h^{\ast}_b = \sqrt{\hat{h}_{Vb}^{2}+\hat{h}_{Ab}^{2}}, limits of \hat{h}_b < 0.59and and h^{\ast}_{b} < 3.02$ are given at 95\% CL.Comment: 8 pages, 1 postscript figure, uses here.sty, epsfig.st

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae
    corecore