31 research outputs found

    Production of transgenic strawberries by temporary immersion bioreactor system and verification by TAIL-PCR

    Get PDF
    BACKGROUND: Strawberry (Fragaria × ananassa) is an economically important soft fruit crop with polyploid genome which complicates the breeding of new cultivars. For certain traits, genetic engineering offers a potential alternative to traditional breeding. However, many strawberry varieties are quite recalcitrant for Agrobacterium-mediated transformation, and a method allowing easy handling of large amounts of starting material is needed. Also the genotyping of putative transformants is challenging since the isolation of DNA for Southern analysis is difficult due to the high amount of phenolic compounds and polysaccharides that complicate efficient extraction of digestable DNA. There is thus a need to apply a screening method that is sensitive and unambiguous in identifying the different transformation events. RESULTS: Hygromycin-resistant strawberries were developed in temporary immersion bioreactors by Agrobacterium-mediated gene transfer. Putative transformants were screened by TAIL-PCR to verify T-DNA integration and to distinguish between the individual transformation events. Several different types of border sequence arrangements were detected. CONCLUSION: This study demonstrates that temporary immersion bioreactor system suits well for the regeneration of transgenic strawberry plants as a labour-efficient technique. Small amount of DNA required by TAIL-PCR is easily recovered even from a small transformant, which allows rapid verification of T-DNA integration and detection of separate gene transfer events. These techniques combined clearly facilitate the generation of transgenic strawberries but should be applicable to other plants as well

    Quantifying the human diet in the crosstalk between nutrition and health by multi-targeted metabolomics of food and microbiota-derived metabolites

    Get PDF
    Background: Metabolomics is a powerful tool for investigating the association between nutrition and health status. Although urine is commonly employed for studying the metabolism and transformation of food components, the use of blood samples could be preferable to gain new insights into the bioavailability of diet-derived compounds and their involvement in health. However, the chemical complexity of blood samples hinders the analysis of this biological fluid considerably, which makes the development of novel and comprehensive analytical methods mandatory. Methods: In this work, we optimized a multi-targeted metabolomics platform for the quantitative and simultaneous analysis of 450 food-derived metabolites by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. To handle the chemical complexity of blood samples, three complementary extraction methods were assayed and compared in terms of recovery, sensitivity, precision and matrix effects with the aim of maximizing metabolomics coverage: protein precipitation, reversed solid-phase extraction, and hybrid protein precipitation with solid-phase extraction-mediated phospholipid removal. Results: After careful optimization of the extraction conditions, protein precipitation enabled the most efficient and high-throughput extraction of the food metabolome in plasma, although solid-phase extraction-based protocols provided complementary performance for the analysis of specific polyphenol classes. The developed method yielded accurate recovery rates with negligible matrix effects, and good linearity, as well as high sensitivity and precision for most of the analyzed metabolites. Conclusions: The multi-targeted metabolomics platform optimized in this work enables the simultaneous detection and quantitation of 450 dietary metabolites in short-run times using small volumes of biological sample, which facilitates its application to epidemiological studies

    Changes in the metabolic profile of human male postmortem frontal cortex and cerebrospinal fluid samples associated with heavy alcohol use

    Get PDF
    Heavy alcohol use is one of the top causes of disease and death in the world. The brain is a key organ affected by heavy alcohol use. Here, our aim was to measure changes caused by heavy alcohol use in the human brain metabolic profile. We analyzed human postmortem frontal cortex and cerebrospinal fluid (CSF) samples from males with a history of heavy alcohol use (n = 74) and controls (n = 74) of the Tampere Sudden Death Series cohort. We used a nontargeted liquid chromatography mass spectrometry-based metabolomics method. We observed differences between the study groups in the metabolite levels of both frontal cortex and CSF samples, for example, in amino acids and derivatives, and acylcarnitines. There were more significant alterations in the metabolites of frontal cortex than in CSF. In the frontal cortex, significant alterations were seen in the levels of neurotransmitters (e.g., decreased levels of GABA and acetylcholine), acylcarnitines (e.g., increased levels of acylcarnitine 4:0), and in some metabolites associated with alcohol metabolizing enzymes (e.g., increased levels of 2-piperidone). Some of these changes were also significant in the CSF samples (e.g., elevated 2-piperidone levels). Overall, these results show the metabolites associated with neurotransmitters, energy metabolism and alcohol metabolism, were altered in human postmortem frontal cortex and CSF samples of persons with a history of heavy alcohol use

    Low-Dose Doxycycline Treatment Normalizes Levels of Some Salivary Metabolites Associated with Oral Microbiota in Patients with Primary Sjögren’s Syndrome

    Get PDF
    Saliva is a complex oral fluid, and plays a major role in oral health. Primary Sjögren’s syndrome (pSS), as an autoimmune disease that typically causes hyposalivation. In the present study, salivary metabolites were studied from stimulated saliva samples (n = 15) of female patients with pSS in a group treated with low-dose doxycycline (LDD), saliva samples (n = 10) of non-treated female patients with pSS, and saliva samples (n = 14) of healthy age-matched females as controls. Saliva samples were analyzed with liquid chromatography mass spectrometry (LC-MS) based on the non-targeted metabolomics method. The saliva metabolite profile differed between pSS patients and the healthy control (HC). In the pSS patients, the LDD treatment normalized saliva levels of several metabolites, including tyrosine glutamine dipeptide, phenylalanine isoleucine dipeptide, valine leucine dipeptide, phenylalanine, pantothenic acid (vitamin B5), urocanic acid, and salivary lipid cholesteryl palmitic acid (CE 16:0), to levels seen in the saliva samples of the HC. In conclusion, the data showed that pSS is associated with an altered saliva metabolite profile compared to the HC and that the LLD treatment normalized levels of several metabolites associated with dysbiosis of oral microbiota in pSS patients. The role of the saliva metabolome in pSS pathology needs to be further studied to clarify if saliva metabolite levels can be used to predict or monitor the progress and treatment of pSS

    Grains - a major source of sustainable protein for health

    Get PDF
    Cereal grains are the main dietary source of energy, carbohydrates, and plant proteins world-wide. Currently, only 41% of grains are used for human consumption, and up to 35% are used for animal feed. Cereals have been overlooked as a source of environmentally sustainable and healthy plant proteins and could play a major role in transitioning towards a more sustainable food system for healthy diets. Cereal plant proteins are of good nutritional quality, but lysine is often the limiting amino acid. When consumed as whole grains, cereals provide health-protecting components such as dietary fiber and phytochemicals. Shifting grain use from feed to traditional foods and conceptually new foods and ingredients could improve protein security and alleviate climate change. Rapid development of new grain-based food ingredients and use of grains in new food contexts, such as dairy replacements and meat analogues, could accelerate the transition. This review discusses recent developments and outlines future perspectives for cereal grain use

    Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective

    Get PDF
    The concept of the exposome was introduced over 15 years ago to reflect the important role that the environment exerts on health and disease. While originally viewed as a call-to-arms to develop more comprehensive exposure assessment methods applicable at the individual level and throughout the life course, the scope of the exposome has now expanded to include the associated biological response. In order to explore these concepts, a workshop was hosted by the Gunma University Initiative for Advanced Research (GIAR, Japan) to discuss the scope of exposomics from an international and multidisciplinary perspective. This Global Perspective is a summary of the discussions with emphasis on (1) top-down, bottom-up, and functional approaches to exposomics, (2) the need for integration and standardization of LC- and GC-based high-resolution mass spectrometry methods for untargeted exposome analyses, (3) the design of an exposomics study, (4) the requirement for open science workflows including mass spectral libraries and public databases, (5) the necessity for large investments in mass spectrometry infrastructure in order to sequence the exposome, and (6) the role of the exposome in precision medicine and nutrition to create personalized environmental exposure profiles. Recommendations are made on key issues to encourage continued advancement and cooperation in exposomics

    Nutrimetabolomics: An Integrative Action for Metabolomic Analyses in Human Nutritional Studies

    Get PDF
    The life sciences are currently being transformed by an unprecedented wave of developments in molecular analysis, which include important advances in instrumental analysis as well as biocomputing. In light of the central role played by metabolism in nutrition, metabolomics is rapidly being established as a key analytical tool in human nutritional studies. Consequently, an increasing number of nutritionists integrate metabolomics into their study designs. Within this dynamic landscape, the potential of nutritional metabolomics (nutrimetabolomics) to be translated into a science, which can impact on health policies, still needs to be realized. A key element to reach this goal is the ability of the research community to join, to collectively make the best use of the potential offered by nutritional metabolomics. This article, therefore, provides a methodological description of nutritional metabolomics that reflects on the state‐of‐the‐art techniques used in the laboratories of the Food Biomarker Alliance (funded by the European Joint Programming Initiative "A Healthy Diet for a Healthy Life" (JPI HDHL)) as well as points of reflections to harmonize this field. It is not intended to be exhaustive but rather to present a pragmatic guidance on metabolomic methodologies, providing readers with useful "tips and tricks" along the analytical workflow
    corecore