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Abstract
Aims/hypothesis The aims of the present work were to identify plasma metabolites that predict future type 2 diabetes, to
investigate the changes in identified metabolites among individuals who later did or did not develop type 2 diabetes over time,
and to assess the extent to which inclusion of predictive metabolites could improve risk prediction.
Methods We established a nested case–control study within the Swedish prospective population-based Västerbotten Intervention
Programme cohort. Using untargeted liquid chromatography-MS metabolomics, we analysed plasma samples from 503 case–
control pairs at baseline (a median time of 7 years prior to diagnosis) and samples from a subset of 187 case–control pairs at
10 years of follow-up. Discriminative metabolites between cases and controls at baseline were optimally selected using a
multivariate data analysis pipeline adapted for large-scale metabolomics. Conditional logistic regression was used to assess
associations between discriminative metabolites and future type 2 diabetes, adjusting for several known risk factors.
Reproducibility of identified metabolites was estimated by intra-class correlation over the 10 year period among the subset of
healthy participants; their systematic changes over time in relation to diagnosis among those who developed type 2 diabetes were
investigated using mixed models. Risk prediction performance of models made from different predictors was evaluated using
area under the receiver operating characteristic curve, discrimination improvement index and net reclassification index.
Results We identified 46 predictive plasma metabolites of type 2 diabetes. Among novel findings, phosphatidylcholines (PCs)
containing odd-chain fatty acids (C19:1 and C17:0) and 2-hydroxyethanesulfonate were associated with the likelihood of
developing type 2 diabetes; we also confirmed previously identified predictive biomarkers. Identified metabolites strongly
correlated with insulin resistance and/or beta cell dysfunction. Of 46 identified metabolites, 26 showed intermediate to
high reproducibility among healthy individuals. Moreover, PCs with odd-chain fatty acids, branched-chain amino acids,
3-methyl-2-oxovaleric acid and glutamate changed over time along with disease progression among diabetes cases.
Importantly, we found that a combination of five of the most robustly predictive metabolites significantly improved risk
prediction if added to models with an a priori defined set of traditional risk factors, but only a marginal improvement
was achieved when using models based on optimally selected traditional risk factors.
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Conclusions/interpretation Predictive metabolites may improve understanding of the pathophysiology of type 2 dia-
betes and reflect disease progression, but they provide limited incremental value in risk prediction beyond optimal
use of traditional risk factors.

Keywords Metabolomics . Multivariate modelling . Predictive biomarker . Reproducibility . Risk prediction . Traditional risk
factor . Type 2 diabetes

Abbreviations
2 h-PG 2 h plasma glucose
AUCROC Area under the receiver operating

characteristic curve
BCAA Branched-chain amino acid
CS Combined score
DAG Diglyceride
FPG Fasting plasma glucose
HOMA-%B HOMA-derived beta cell function
ICC Intra-class correlation
LC Liquid chromatography
ML-PLS Multilevel partial least squares
MSI Metabolomics Standard Initiative

PC Phosphatidylcholine
ROC Receiver operating characteristic curve
RT Retention time
TS Traditional risk score

Introduction

Type 2 diabetes is a metabolic disorder characterised by insu-
lin resistance in target tissues and deficiency of insulin secre-
tion in the pancreas [1]. Identification of individuals at risk of
developing type 2 diabetes is particularly important for pre-
vention and early intervention [2]. Metabolomics is an

•

•

•

•

•

•

•

850 Diabetologia (2018) 61:849–861



emerging tool to discover metabolic alterations before onset of
disease, thereby potentially providing novel insights into dis-
ease pathophysiology and/or improving disease prediction [2,
3]. Early alterations in branched-chain amino acids (BCAAs),
phospholipids and acylcarnitines have been linked to type 2
diabetes risk, but the complex metabolic alterations underly-
ing the pathophysiology remain unclear [4].

Untargeted liquid chromatography (LC)-MSmetabolomics
applied in prospective cohort studies covers more metabolites
and may have greater potential to capture the overall metabol-
ic status, provide more comprehensive information for mech-
anistic investigations and improve prediction [5]. Recent stud-
ies applying untargeted LC-MS metabolomics have success-
fully uncovered novel metabolites associated with future type
2 diabetes [6–11]. However, studies in general have some
limitations, e.g. small number of incident diabetes cases [6,
8, 10], lack of generalisability due to single-sex cohorts [6, 9],
limited analytical platform set-up [7–9], and ambiguous me-
tabolite annotation by only matching molecular mass against
online databases [7, 8]. Such limitations may partly explain
some of the inconsistent findings across studies.

In most observational studies, metabolites have been deter-
mined in a single sample at baseline [12, 13]. However, me-
tabolites are typically subject to both random and systematic
variations over time and random intra-individual variability of
a single measurement will affect the precision in risk estimates
when linking a potential biomarker to endpoint and bias any
observed association towards null [14]. Therefore, the repro-
ducibility of predictive metabolites for type 2 diabetes is an
important characteristic that directs the applicability in epide-
miological and clinical investigations but has rarely been in-
vestigated before.

Several metabolomics studies aiming to develop novel bio-
markers for type 2 diabetes have included discovered predic-
tive metabolites in combination with traditional risk factors,
i.e. anthropometry and/or biochemical measures in disease
risk prediction models, and have found improved risk predic-
tion [4, 8, 15–18]. However, in all these studies potential me-
tabolite predictors have been added to a priori defined models
based on established risk scores and/or a subset of risk factors.
To our knowledge, no study has added metabolites to risk
factors that were optimally selected to fit the cohort in order
to elucidate the independent contribution of metabolites in
predicting type 2 diabetes risk.

We therefore established a nested case–control studywithin
the Swedish Västerbotten Intervention Programme cohort
[19] to identify predictive plasma metabolites of type 2 diabe-
tes, using untargeted LC-MS metabolomics. We also assessed
the association of these metabolites with insulin resistance and
beta cell function, to investigate their role in glucose homeo-
stasis. Moreover, we evaluated the long-term reproducibility
and systematic changes in these metabolites from baseline up
to 10 years of follow-up among controls and cases,

respectively. Furthermore, we assessed the extent to which
inclusion of metabolites beyond traditional risk factors could
improve risk prediction, using different variable selection
methods. To our knowledge, this study constitutes the hitherto
largest untargeted metabolite-profiling study of incident type
2 diabetes in a nested case–control setting.

Methods

Study population

The investigation was set up as a case–control study nested
within the Västerbotten Intervention Programme cohort [19].
Details of the cohort can be found in the electronic supple-
mentary material (ESM) Methods. Among 3256 incident dia-
betes cases identified from the diabetes registry DiabNorth
[20], we selected 503 participants at baseline who had an
unthawed fasting plasma sample in the biobank and who later
developed type 2 diabetes after a median time of 7 years
(Fig. 1a). Each case was individually matched to one non-
diabetic individual according to age (±2 years), sex, ethnic
group and season of blood draw. Among the 503 pairs of
selected participants, 187 case–control pairs had a second
follow-up sample drawn and data collected 10 years after
baseline (Fig. 1b). The corresponding characteristics of the
subgroup of 187 case–control pairs with follow-up data were
similar to those of the 503 case–control pairs and those with-
out available repeated samples (ESM Table 1). To investigate
changes in metabolites over time in relation to the time of
diagnosis, we then assigned the 187 pairs of participants to
three groups, depending on when the diagnosis was made in
relation to the second sample (ESM Table 2): group A, where
the second sample was drawn before (median 2 years) diag-
nosis (n = 26 pairs); group B, where the second sample was
drawn in the same year as diagnosis (n = 52 pairs); and group
C, where the second sample was drawn after (median 4 years)
diagnosis (n = 109 pairs). In addition, to examine the effect of
medication on metabolite levels during follow-up, we strati-
fied the 187 cases into four groups: no medication (n = 19),
only glucose-lowering medication (n = 13), other medication
(n = 48), and glucose-lowering and other medication (n = 107)
(ESM Table 3). Informed consent was obtained from all par-
ticipants included in the prospective cohort study from which
biological samples analysed in this study originated. The
study protocol was approved by the regional ethics committee
in Uppsala, Sweden (registration number 2014/011).

Untargeted LC-MS metabolomics

Details of the technical procedures are described elsewhere
[21] and are provided in ESM Methods. In brief, fasting hep-
arin plasma samples were de-proteinised and analysed by
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HPLC-qTOF-MS/MS (Agilent QTOF 6540, Agilent
Technologies, Santa Clara, CA USA). Reverse-phase and hy-
drophilic interaction chromatography were applied to detect
both lipophilic and hydrophilic metabolites, using both posi-
tive and negative electrospray ionisation modes. Plasma sam-
ples were analysed in eight batches; randomisation was
constrained to keep sample pairs and follow-up samples with-
in the same batch, but otherwise there was full randomisation
within batch. The stability and functionality of the system
weremonitored throughout all the instrumental analyses using
quality control samples.

Data preprocessing

Throughout this article, the term ‘feature’ refers to a mass
spectral peak, i.e. a molecular entity with a unique mass-to-
charge ratio and retention time (RT) as measured by an LC-
MS instrument. The term ‘metabolite’ refers to a metabolite,
with or without successful identification.

Briefly, data deconvolution was performed with XCMS
(www.bioconductor.org; downloaded in March 2016) using
parameters obtained from an optimisation procedure (ESM

Methods, ESM Fig. 1, ESM Table 4). Within- and between-
batch correction for instrumental drift in RT, mass accuracy and
signal intensity was performed [21]. Qualified features poten-
tially generated from a single metabolite were aggregated based
on PUTMEDID-LCMS (http://www.mcisb.org/resources/
putmedid.html; downloaded in May 2016) [22], to reduce the
over-representation of a particular metabolite. In total, 29,240
features were retained after a stringent normalisation procedure
(ESM Methods, ESM Fig. 1). Missing values were replaced
with random selection from a normal distribution between zero
and the lowest measured peak intensity within the feature.

Statistical analysis

Discovery of metabolites that predicted future type 2 diabe-
tes A comprehensive data analysis pipeline was applied to
identify predictive metabolites of type 2 diabetes (ESM
Fig. 1). Briefly, sparse partial least squares regression was
performed as a pre-filter on data obtained from each chro-
matograph to remove the majority of uninformative features
that were unlikely to contribute to discrimination between
cases and controls. Pre-filtered data were then processed

503 cases at baseline
(male=224, female=279)

VIP participants (N=98,300) 

187 cases at 10 year follow-up
(male=101, female=86) 

Identification of eligible cases

Random selection for whom unthawed blood 
samples were available and/or had follow-up
samples available 

Matched 503 controls at baseline
(male=224, female=279)

187 controls at 10 year follow-up
(male=101, female=86) 

a

b

Baseline 10 year follow-up

Median
2 years

Median 
4 years

Group A (n=26)

Group B (n=52) Baseline 10 year follow-up

Baseline 10 year follow-up

Diagnosis

Diagnosis

Diagnosis

Group C (n=109)

Fig. 1 (a) Flowchart of
participant selection from the
Västerbotten Intervention
Programme cohort. (b)
Information on baseline and
10 year follow-up sampling
among 187 type 2 diabetes cases.
Group A, where the second
sample was drawn before (median
2 years) type 2 diabetes diagnosis
(n = 26 pairs); group B, where the
second sample was drawn in the
same year of type 2 diabetes
diagnosis (n = 52 pairs); group C,
where the second sample was
drawn after (median 4 years) type
2 diabetes diagnosis (n = 109
pairs)
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using an in-house developed multilevel partial least squares
(ML-PLS) classification algorithm. We incorporated stan-
dard ML-PLS [23] into a repeated double cross-validation
framework with unbiased variable selection, which effec-
tively determines a parsimonious set of discriminative fea-
tures ranked according to their importance with reduced
risk of statistical overfitting [24, 25]. The predictive ability
of the constructed models outperformed those of 500 per-
muted models, demonstrating robustness and validity of the
ML-PLS model in discriminating cases from controls (ESM
Fig. 2). Following ML-PLS analysis, 2743 of the 29,240
qualified features were selected, of which 79 features were
top-ranked (i.e. where the variable importance ranking
score was <100, with a lower score indicating a high im-
portance of a given discriminative feature between cases
and controls) in reverse-phase data and 92 were top-
ranked in hydrophilic interaction chromatography data.
Top-ranked features had the highest importance for discrim-
ination; including more features did not substantially im-
prove the discrimination (data not shown). Features that
were annotated as ‘metabolites’ (see ‘Identification of me-
tabolites’ below) were subjected to subsequent analyses.

Conditional logistic regression was applied to calculate the
OR of type 2 diabetes with metabolites at baseline using R
package survival [26]. For each metabolite, ORs were calculated
for quartiles and per SD increment. A crude model was calculat-
ed for each metabolite. To investigate whether associations were
independent from known risk factors, we constructed: model 1,
adjusting for fasting plasma glucose (FPG, mmol/l) and BMI,
(kg/m2);model 2, further adjusting for physical activity (inactive,
moderately inactive, moderately active, active), education (ele-
mentary school, vocational school, secondary school, university
education/college), smoking (smoker, former smoker, occasional
smoker, non-smoker), and consumption of alcohol (sex-specific,
g/day), dietary fibre (g/day), red and processed meat (g/day) and
coffee (g/day); andmodel 3, further adjusting for total cholesterol
(mmol/l), triacylglycerols (mmol/l) and systolic and diastolic BP
(mmHg). We also assessed the association between metabolites
and incident diabetes cases after excluding 95 case participants
who had FPG ≥5.9 mmol/l and 2 h plasma glucose (2 h-PG)
>11.1 mmol/l at baseline, or who developed diabetes during the
first 2 years after baseline sampling. To compensate for multiple
testing, false discovery rate-adjusted p values were calculated;
the significance threshold was set at p< 0.05.

Assessment of changes in predictive metabolites over time
Reproducibility of metabolites among controls was esti-
mated by intra-class correlation (ICC) over the 10 year
period between the two sampling occasions among the
subset of healthy participants (n = 187), using an SAS
macro (%ICC9; SAS Institute, Cary, NC, USA). If the
mean metabolite concentration between occasions differed
significantly, ICC was instead calculated on rank-

transformed data. We also performed mixed models to
investigate changes in metabolites over the 10 year period
in relation to the time of diagnosis among cases. In a
secondary analysis, paired t tests were applied to examine
whether metabolite levels differed between baseline and
follow-up among cases, stratified by medication.

Evaluation of the predictive performance of metabolites We
assessed whether metabolites could improve risk prediction
using two approaches: (1) by adding predictive metabolites
to covariates used in model 1 or model 2 (this approach has
been used in most published studies [4, 8, 15–18]); or (2)
through a selection of optimal variables from traditional risk
factors and/or metabolites using a validated random forest
algorithm [24]. This unbiased variable selection approach re-
sulted in three models with an optimal number of the most
relevant predictors based on maximised prediction perfor-
mance and minimised risk of statistical overfitting [24]. For
models based on the second approach above, the metabolite
score was based only on selected variables from the annotated
predictive metabolites (Metabolomics Standard Initiative
[MSI] 1–2), the traditional risk score (TS) was based on 14
known traditional type 2 diabetes risk factors to which we had
access (age, FPG, BMI, 2 h-PG, total cholesterol, triacylglyc-
erols, systolic- and diastolic BP, consumption of coffee, die-
tary fibre, red and processed meat, and education, physical
activity and smoking), and the combined score (CS) was
based on optimal variable selection among both metabolites
and traditional risk factors. All scores were calculated accord-
ing to the method described previously [8]. 2 h-PG is a widely
accepted cornerstone of prediabetes diagnostics, but it is rarely
applied in large cohort studies due to time and cost. Therefore,
we repeated the selection approach for TS-2h-PG, excluding
2 h-PG from the list of variables. The area under the receiver
operating characteristic (AUCROC) was computed using R
package pROC [27] to evaluate prediction performance of
different models. To avoid overfitting, we randomly split the
samples 10,000 times into training (60%) and test sets (40%)
for prediction and validation. The mean of AUCROC values
was calculated from 10,000 ROC curves and the 95% CIs
were calculated as the 2.5 and 97.5 percentile values. We used
Wilcoxon’s signed-rank test to determine differences in the
predictive performance between different models. Moreover,
we also assessed the incremental predictive performance of
metabolite score by using the net reclassification improvement
and integrated discrimination improvement test using R pack-
age PredictABEL [28] .

Correlations Spearman correlation coefficients were calcu-
lated to explore the association of metabolites with tradi-
tional risk factors at baseline among 503 healthy partici-
pants. Partial Spearman correlations were calculated to in-
vestigate independent associations between each of the

Diabetologia (2018) 61:849–861 853



metabolites and HOMA-IR and HOMA-derived beta cell
function (HOMA-%B), adjusted for BMI, age, sex and
case–control status among 187 case–control pairs with
follow-up samples. HOMA-IR and HOMA-%B were com-
puted using the HOMA calculator (www.dtu.ox.ac.uk;
accessed 1 June 2017).

Identification of metabolites

We identified metabolites based on accurate mass and
product ion spectrum matching against an in-house library
of authentic standards, online databases and literature
(ESM Table 5). The confidence level of annotation was
categorised according to the MSI reporting criteria [29].
Lipids were verified in both positive and negative

Table 1 Baseline characteristics
of participants who later devel-
oped type 2 diabetes and their
matched controls in a case–con-
trol study nested within the
Västerbotten Intervention
Programme cohort

Characteristic Cases

(n = 503)

Matched controls

(n = 503)

p value for difference

Mena 44.5 44.5

Age, yearsa 50.2 (7.9) 50.1 (8.0)

Fasting glucose, mmol/l 6.0 (0.9) 5.5 (1.1) <0.0001

2 h-PG, mmol/l 8.3 (2.8) 6.5 (1.6) <0.0001

BMI, kg/m2 29.5 (4.9) 25.5 (3.8) <0.0001

HOMA-IRb 1.7 (1.1) 0.9 (0.7) <0.0001

HOMA-%Bb 101.5 (72.9) 74.5 (27.7) <0.0001

Triacylglycerols, mmol/l 2.0 (1.3) 1.4 (0.7) <0.0001

Total cholesterol, mmol/l 5.9 (1.2) 5.7 (1.1) <0.0001

Systolic BP, mmHg 138 (18.1) 128 (17.2) <0.0001

Diastolic BP, mmHg 85 (10.4) 80 (9.7) <0.0001

Total energy intake, kJ/day 7186.0 (2551.2) 7282.2 (2594.1) 0.6

Dietary fibre, g/day 18.9 (7.4) 19.5 (8.2) 0.3

Whole grains, g/day 72.2 (36.5) 74.4 (39.6) 0.5

Fat, g/day 68.2 (26.0) 64.3 (27.7) 0.6

Alcohol, g/day 3.3 (6.7) 3.6 (4.3) 0.1

Smoking status 0.03

Current smoker 22.4 19.1

Former smoker 28.6 25.8

Occasional smoker 1.0 3.8

Former occasional smoker 9.2 7.2

Non-smoker 38.7 43.9

Physical activityc 0.1

Inactive 18.7 17.9

Moderately inactive 35.4 35.9

Moderately active 28.2 27.3

Active 17.7 18.9

Education 0.04

Elementary school 33.3 29.8

Vocational (training) school 28.1 26.2

Secondary school 22.3 20.6

University education/college 16.3 23.4

Data are mean (SD) or %
aMatching factors
b HOMA-IR and HOMA-%B at baseline among a subset of 187 case–control pairs with repeated samples
available
c Physical activity defined based on the Cambridge physical activity index [47], which is a validated index based
on two questions in the Västerbotten Intervention Programme questionnaire related to physical activity in work
and leisure
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electrospray ionisation modes according to their charac-
teristic product ions. The annotated classes (MSI 3) are
presented as ‘chemical class mass@RT’, while unknown
compounds (MSI 4) are presented as ‘mass@RT’.

Results

Baseline characteristics of the 503 pairs of participants are
presented in Table 1. Several known type 2 diabetes risk fac-
tors were higher in cases than in controls. BMI and HOMA-IR
were higher in both cases and controls at 10 year follow-up
compared with baseline, while total cholesterol and
HOMA-%B were lower in cases at follow-up.

We discovered 46 predictive metabolites of type 2 diabetes,
including novel findings, i.e. phosphatidylcholines (PCs) con-
taining odd-chain fatty acids (C19:1 and C17:0) and 2-
hydroxyethanesulfonate, as well as previously identified pre-
dictive biomarkers and 11 unknowns (Fig. 2, Table 2, ESM
Table 6). Of these 46 metabolites, 44 were associated with
ORs of type 2 diabetes independently of baseline BMI and
FPG, and 42 remained significant after further adjustment for
lifestyle factors. On further adjustment for total cholesterol,
triacylglycerols and BP, associations were overall attenuated,
but 33metabolites remained significant (Fig. 2, ESMTable 6).
Exclusion of cases with abnormal glucose levels or cases who
developed diabetes during the first 2 years after baseline sam-
pling did not substantially affect results (ESM Fig. 3).

Fig. 2 ORs per SD increment
(95% CI) of metabolites based on
results from multivariate-adjusted
conditional logistic regression
models. Model 1 (blue):
adjustment for FPG, BMI; model
2 (red): further adjustment for
physical activity, education,
smoking, consumptions of
alcohol, dietary fibre, red and
processed meat and coffee intake;
model 3 (green): additional
adjustment for plasma total
cholesterol, triacylglycerols, and
systolic and diastolic BP. Error
bars indicate the 95% CI; a denote
novel predictive biomarkers
found in the current study
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Table 2 Metabolites that were significantly associated with odds of developing type 2 diabetes in the present study and in studies reported in the
literature, metabolite changes at the 10 year follow-up among controls and cases, and effect of medication in the present study

MetaMetabolite Association with risk of developing type 2 diabetes at
baseline

Changes in metabolites over time Medication

Directiona Pathophysiologyb Referencesc ICC (95% CI)d Cases vs
controlse

Baseline vs
follow-upf

LysoPC(18:2) – HOMA-IR [6, 10, 15] 0.38 (0.26, 0.50) Lower

LysoPC(18:1) – HOMA-IR [10, 15] 0.51 (0.40, 0.61) Lower

LysoPC(p-16:0) – HOMA-IR 0.42 (0.31, 0.48) Lower Lower

LysoPC(17:0) – HOMA-IR [10, 30] 0.22 (0.11, 0.38) Lower Lower

LysoPC(19:1) – HOMA-IR, HOMA-%B 0.5 (0.40, 0.61) Lower Lower

LysoPC(20:1) – HOMA-IR [10] 0.27 (0.17, 0.41) Lower

PC(16:0/16:1) + HOMA-IR [48] 0.25 (0.14, 0.40) Higher Affectedg

PC 583.3792@10.75 – HOMA-IR 0.10 (0.03, 0.31) Lower

PC(16:1/14:0)h + 0.25 (0.14, 0.40) Higher

PC(15:1/18:2)h – HOMA-IR, HOMA-%B [10] 0.45 (0.34, 0.56) Lower Lower

PC(17:0/18:2) – HOMA-IR 0.21 (0.11, 0.38) Lower

DAG(16:1/16:1)h + HOMA-IR, HOMA-%B 0.28 (0.16, 0.42) Higher Affectedg

DAG(14:0/16:0)h + HOMA-IR, HOMA-%B 0.31 (0.20, 0.45) Higher Affectedg

DAG 531.4484@13.29h + HOMA-IR, HOMA-%B 0.36 (0.25, 0.49) Higher Affectedg

DAG 571.4437@13.30h + HOMA-IR, HOMA-%B 0.40 (0.29, 0.53) Higher Affectedg

DAG(14:0/18:1)h + HOMA-IR, HOMA-%B 0.37 (0.25, 0.49) Higher Affectedg

DAG(16:0/18:1)h + HOMA-IR, HOMA-%B 0.43 (0.32, 0.55) Higher Affectedg

Fatty acid 364.333@10.46 + HOMA-IRi 0.35 (0.24, 0.48) Higher

Fatty acid 259.1608@7.63 + HOMA-IR, HOMA-%B 0.49 (0.38, 0.59) Higher

2-Methylbutyroylcarnitine + HOMA-IRi [9, 39] 0.54 (0.44, 0.64) Higher

3-Hydroxyisovalerylcarnitine + [9, 39] 0.41 (0.30, 0.53) Higher

Phenylalanine + HOMA-IRi [11, 38] 0.62 (0.53, 0.70) Higher Affectedg

Leucine + HOMA-IR, HOMA-%B [10, 15, 38] 0.65 (0.57, 0.73) Higher Higher

Isoleucine + HOMA-IR, HOMA-%B [10, 15, 38] 0.68 (0.59, 0.75) Higher Higher

Valine + HOMA-IR, HOMA-%B [10, 15, 16, 38] 0.50 (0.37, 0.58) Higher Higher

Tryptophan + HOMA-IR, HOMA-B%i [48] 0.46 (0.35, 0.57) Higher Affectedg

L-Tyrosine + HOMA-IR [9, 11, 38] 0.50 (0.39, 0.60) Higher

Alanine + [11, 49] 0.32 (0.21, 0.45) Higher

Citrulline + HOMA-IRi [40] 0.43 (0.32, 0.54) –

N-Acetylglycineh – HOMA-IR, HOMA-%Bi [6] 0.39 (0.28, 0.51) Lower Affectedg

2-Hydroxyethanesulfonate – HOMA-IR, HOMA-%Bi 0.34 (0.23, 0.47) Lower Affectedg

Glutamate + HOMA-IR, HOMA-%B [49] 0.39 (0.28, 0.52) Higher Higher

Glutamate derivate 316.0887@6.19 + HOMA-IR, HOMA-%B 0.41 (0.30, 0.53) Higher Higher

Bile acid386.2455 @8.21 + HOMA-IR, HOMA-%B 0.65 (0.56, 0.72) Higher Higher

3-Methyl-2-oxovaleric acid + HOMA-IRi [6, 39] 0.61 (0.48, 0.67) Higher Higher

161.0062@2.7 – HOMA-IR, HOMA-%B 0.45 (0.35, 0.57) Lower Affectedg

88.0162@1.71 + HOMA-IR 0.23 (0.12, 0.38) Higher

198.0142 @1.71 + HOMA-IR 0.24 (0.13, 0.40) Higher

491.1196@6.19 – HOMA-IR 0.52 (0.42, 0.62) Lower

518.4333@12.07 + HOMA-IR, HOMA-%B 0.40 (0.28, 0.52) Higher

590.4876@14.11 + HOMA-IR, HOMA-%B 0.35 (0.24, 0.48) Higher

428.2242@7.98 + HOMA-IR, HOMA-%B 0.76 (0.70, 0.82) Higher Affectedg

566.3105@8.28 + HOMA-IR, HOMA-%B 0.54 (0.44, 0.64) Higher

614.3679@8.60 + 0.63 (0.54, 0.71) Higher
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Among 46 identified metabolites, 26 showed intermediate
to high reproducibility among healthy controls (0.4 ≤ ICC ≤
0.75). Moreover, lysoPC(p-16:0), lysoPC(19:1) and PC(15:1/
18:2) were inversely associated with type 2 diabetes at base-
line and were lower among cases at the 10 year follow-up
compared with baseline, regardless of whether the second
sample was taken before, at the same time or after diagnosis.
The opposite was found for BCAAs, 3-methyl-2-oxovaleric
acid, bile acid and glutamate, all of which were increased at
follow-up (Table 2, ESM Fig. 4). In a secondary analysis, we
found that changes in diglycerides (DAGs), phenylalanine,
tryptophan, N-acetylglycine and 2-hydroxyethanesulfonate
between baseline and follow-up differed across cases with or
without different medications (Table 2, ESM Table 7).

A metabolite score was derived from the five most robustly
predictive metabolites, i.e. DAG(16:0/18:1), lysoPC(19:1),
PC(17:0/18:2), isoleucine and L-tyrosine (Fig. 3a). Adding this
score to model 1 or model 2 significantly improved prediction,
e.g. AUCROC increased by around 4% (p < 0.001). The optimal
TS consisted of 2 h-PG, FPG, BMI, total cholesterol, triacyl-
glycerols, systolic BP and red and processedmeat intake among
cohort-specific traditional risk factors, and showed significantly
improved prediction compared with model 1, model 2 and me-
tabolite score (AUCROC increased by 5.4%, 8.3% and 6.8%,
respectively, p < 0.001). The addition of metabolite score to TS
marginally increased AUCROC by 2.6% (Fig. 3b). Interestingly,

when a metabolite score was applied to the participants who
were misclassified by the TS, 36 of the 80 misclassified partic-
ipants at high risk (45%) were correctly classified as later cases.
On excluding 2 h-PG fromTS (i.e. TS-2h-PG), this risk score still
showed better prediction compared with model 1 or 2, and
addition of robust predictive metabolites to TS-2h-PG signifi-
cantly increased AUCROC by 2.7% (ESM Fig. 5). The optimal
selection of variables for the CS included nine predictors: FPG,
2 h-PG, triacylglycerols, BMI, lysoPC(19:1), lysoPC(18:2),
DAG(14:0/18:1),N-acetylglycine and isoleucine, and had com-
parable AUCROC to the TS.

Most metabolites were positively or negatively correlated
with BMI and 2 h-PG (r = −0.4~0.5, p < 0.0001; ESM Fig. 6).
DAGs were strongly correlated with triacylglycerols (r =
0.45~0.64, p < 10−9). Moreover, 41 of the metabolites were
directly correlated with HOMA-IR and/or HOMA-%B at
baseline (Table 2, ESM Fig. 7). The correlations between
some metabolites, e.g. BCAAs, lysoPCs, DAGs and
HOMA-%B, were attenuated at the 10 year follow-up.

Discussion

In this large nested case–control study, we explored predictive
metabolites of type 2 diabetes by adopting untargeted meta-
bolomics in combination with a robust data processing

Table 2 (continued)

MetaMetabolite Association with risk of developing type 2 diabetes at
baseline

Changes in metabolites over time Medication

Directiona Pathophysiologyb Referencesc ICC (95% CI)d Cases vs
controlse

Baseline vs
follow-upf

665.2645@9.87 – 0.50 (0.40, 0.61) Lower

597.4023@10.93 – HOMA-IRi 0.22 (0.12, 0.38) Lower Affectedg

a Direction: + denotes a higher concentration of metabolite present in cases, while − denotes a lower concentration of metabolites compared with cases
bMetabolites at baseline correlated significantly (Bonferroni-adjusted p < 0.05) with HOMA-IR and/or HOMA-%B
c Previous findings reported in the literature from 2013 to the present. For each metabolite, the list of papers is not exhaustive. Reviews are not
considered. For lipids, reference is made only to publications that report fatty acid constituents
d ICC represents long-term reproducibility of metabolites among healthy controls (n = 187) over 10 years. ICC ≥0.4 denotes good to excellent
reproducibility
e Difference between cases (n = 187) and their matched controls, independent of BMI, age, sex and time to diagnosis stratification. ‘Higher’ means
metabolite level is higher in the case than in the matched control, and vice versa
f The difference between baseline and the 10 year follow-up among cases, independent of BMI, age, sex and time to diagnosis stratification. ‘Higher’
means metabolite level is higher at follow-up than at baseline, and vice versa
g Group-specific difference in metabolites between baseline and 10 year follow-up in 187 cases. Four groups were created according to medication: no
medication (n = 19), only glucose-lowering medication (n = 13), other medication (n = 48), and glucose-lowering and other medication (n = 107).
‘Affected’ means that medication affected changes in metabolite levels between baseline and 10 year follow-up among cases
h Group-specific differences in metabolites between baseline and 10 year follow-up in 187 cases. Three groups were created depending on when type 2
diabetes diagnosis occurred in relation to the 10 year follow-up (group A: repeated sampling before diagnosis; group B: repeated sampling close to
diagnosis; group C: repeated sampling after diagnosis)
i Partial Spearman correlations of metabolites with HOMA-%B and/or HOMA-IR were affected by time to diagnosis, and significant correlations were
only found a median time of 6 years before type 2 diabetes onset
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pipeline. By using the repeated samples collected 10 years
after baseline, we found that the long-term reproducibility in
healthy controls was modest to excellent for a majority of the
metabolites, strengthening their potential as predictive bio-
markers in clinical studies; several metabolites had changed

in the disease-associated direction at follow-up, potentially
representing disease progression. Importantly, our compre-
hensive prediction analyses illustrated that single measure-
ments of predictive metabolites can provide complementary
but limited information beyond the optimal use of traditional
risk factors in relation to risk prediction.

Predictive metabolites of type 2 diabetes

We discovered for the first time that lysoPC(19:1) and
PC(17:0/18:2) were associated with higher insulin sensitivity
and inversely associated with type 2 diabetes. Two previous
studies have reported an inverse association between PCs con-
taining odd-chain fatty acids and type 2 diabetes [10, 30], but
none have assessed reproducibility. Herein, we found high
long-term reproducibility (ICC ≥0.4) of lysoPC(19:1) and
PC(15:1/18:2) among healthy controls, reinforcing their po-
tential as predictive biomarkers. Plasma odd-chain fatty acids
are often considered asmarkers of dairy product intake but can
also be formed endogenously in adipocytes through α-
oxidation of palmitic and stearic acid [31, 32] or other biosyn-
thesis [32]. We found no correlation of these PCs with milk,
yogurt or cheese. More studies are needed to improve our
understanding of PCs containing odd-chain fatty acids in type
2 diabetes and for mechanistic investigations.

We explored 2-hydroxyethanesulfonate as a novel predictive
metabolite with moderate reproducibility (ICC 0.34 [95% CI
0.23, 0.47]). 2-Hydroxyethanesulfonate is a downstream me-
tabolite of taurine, possibly formed by anaerobic gut bacteria
[33] or myeloperoxidase-induced degradation. It correlated
with triacylglycerols (r = −0.2, p < 0.001) and increased with
antihypertensive and/or lipid-controlling medication, suggest-
ing a role in lipid metabolism. The lower level of 2-
hydroxyethanesulfonate among cases supports a proposed link
between taurine metabolism disturbance and diabetes [34, 35].

We also confirmed several metabolites that have previously
been reported. Replicating previous findings in an external
study with a larger number of cases brings strong supportive
evidence to previous findings. The observed strong associa-
tions of these metabolites with future type 2 diabetes support
existing hypotheses in relation to the pathogenesis of type 2
diabetes, e.g. dysregulated lipid metabolism (PCs) [36, 37],
impaired BCAA metabolism (BCAAs and their metabolites)
[38, 39], abnormal DAG accumulation that interferes with
cellular signalling (DAGs) [37], and the role of the small in-
testine in the control of glucose homeostasis (citrulline) [40].
We also replicated the inverse association for N-acetylglycine
[6], but the mechanisms remain unknown. N-Acetylglycine
has been related to gut bacterial metabolism and positively
correlated with dietary fibre intake [41], but this could not
be confirmed at present (r < 0.1).

Importantly, our study provides information of reproduc-
ibility of previously identified predictive metabolites, which
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Fig. 3 Comparison of the prediction performance of clinical risk fac-
tors, metabolites and their combinations for risk of type 2 diabetes. (a)
Optimally selected subset of predictors, employing a validated random
forest algorithm, for TS, CS and metabolite score (MS). (b) Prediction
performance of different models trained from metabolites, traditional risk
factors and their combinations. AUCROC values were obtained from
10,000 models where the samples were randomly split into training
(60%) and test sets (40%) for prediction and validation; the AUCROC

values were 0.73 (95% CI 0.69, 0.76) for MS, 0.74 (95% CI 0.70, 0.77)
for model 1, 0.77 (95% CI 0.73, 0.79) for model 1 + MS, 0.72 (95% CI
0.67, 0.74) for model 2, 0.75 (95% CI 0.72, 0.78) for model 2 + MS, 0.78
(95% CI 0.76, 0.81) for TS, 0.80 (95% CI 0.77, 0.83) for TS + MS and
0.79 (95% CI 0.76, 0.82) for CS. Adding an MS to model 1 resulted in a
continuous net reclassification improvement (NRI) of 0.85 (95%CI 0.73,
0.95) and an integrated discrimination improvement (IDI) of 0.16 (95%
CI 0.14, 0.19) (p < 0.001 for both analyses), and to model 2 NRI 0.76
(95%CI 0.65, 0.88) and IDI 0.12 (0.09, 0.14) (p < 0.01 for both analyses),
indicating a significant improvement in risk stratification. Adding MS to
TS resulted in a marginal increase in risk stratification (NRI 0.52 [95%CI
0.40, 0.64], p < 0.05; IDI 0.03 [95% CI 0.02, 0.04]; p > 0.05)
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has rarely been investigated before. Specifically, four out of
seven PCs, i.e. lysoPC(18:2), lysoPC(17:0), lysoPC(20:1) and
PC(16:0/16:1), had weak to moderate long-term reproducibil-
ity (ICC <0.4) in the present study, which limits their use as
predictive biomarkers. BCAAs and 3-methyl-2-oxovaleric ac-
id had high long-term (10 years) reproducibility (ICC >0.6),
similar to the 2 year ICCs [42] but weaker than the shorter
term reproducibility [43, 44].

Changes in metabolites over time among type 2
diabetes cases

We found that BCAAs, 3-methyl-2-oxovaleric acid and glu-
tamate increased at follow-up among cases, while PCs con-
taining odd-chain fatty acids decreased, regardless of time to
diagnosis or use of medication. By contrast, medication ap-
peared to affect changes in some metabolites at follow-up,
such as DAGs, phenylalanine, tryptophan, N-acetylglycine
and 2-hydroxyethanesulfonate (ESM Table 7). This may ex-
plain the attenuated correlations between metabolites and
HOMA-%B at follow-up (ESM Fig. 7). Metabolites changed
over time along with disease progression, and their responses
to medication may provide novel candidate targets for thera-
peutic intervention, as well as biomarkers of both disease pro-
gression and treatment efficacy. These preliminary findings
merit further investigation using appropriate study settings,
e.g. randomised controlled trials [45].

Improved type 2 diabetes risk prediction with optimal
variable selection

Our results showed that optimal use of a single measurement
of metabolites at baseline could improve risk prediction when
combined with traditional risk factors that are typically mea-
sured in observational studies [4, 8, 15–18]. However, optimal
selection among traditional risk factors is probably of even
greater importance (Fig. 3).

Similar to other studies, adding selected predictive metabo-
lites to models constructed using predefined risk factors that
have been used as covariates adjusted in prediction models
improved risk prediction by 3–5%. The optimal study-
specific selection of risk factors (TS approach) led to a larger
improvement in risk prediction (6–8%) compared with com-
monly used predefined risk predictors. Of note, when using the
optimal selected traditional risk factors (TS or TS-2h-PG) as
reference, metabolites still improved the prediction somewhat,
but not to the same extent as when added to predefined risk
factor models (models 1 and 2). Therefore, our results suggest
that the substantial improvements with the addition of potential
metabolite biomarkers observed and highlighted in previous
studies may be due to comparison with suboptimally selected
traditional risk predictors and may not represent true

improvements, due to complementarity of metabolite informa-
tion. To our knowledge, this has not been discussed in previous
studies and needs to be confirmed in other populations.

Many disease risk predictors typically used in cohort stud-
ies, e.g. single measurements of blood lipids, BP, and dietary
data from a food frequency questionnaire, suffer from large
systematic and random errors, which in turn may lead to in-
accurate risk estimates [46]. Although providing little addi-
tional benefit in predictive performance to the TS, we ob-
served that the selected metabolite predictors in CS showed
higher long-term reproducibility (0.37 ≤ ICC ≤ 0.68) com-
pared with total cholesterol, systolic BP and consumption of
red and processed meat (0.3 ≤ ICC ≤ 0.41) involved in TS,
suggesting that optimal use of reproducible metabolites may
improve statistical power, provide more accurate risk esti-
mates and under some conditions serve as a complement or
alternative to established risk factors.

Strengths and limitations

Our study has some limitations. First, as an observation-
al study it cannot confirm causality of the findings.
Second, although we applied robust internal validation
for evaluation of predictive metabolites, external valida-
tion of findings in independent cohorts is still warrant-
ed. Despite this limitation, 20 out of 30 metabolites
(MSI 1–2) highlighted in this study as top-ranked pre-
dictors had previously been reported, suggesting that
our results are robust. Third, for risk prediction, due
to the lack of available measurements of LDL- and
HDL-cholesterol and the missing data on waist circum-
ference, we could not calculate established risk scores,
such as the Diabetes Risk Score or the Framingham
Risk Score, as references to compare with identified
predictive metabolites. Moreover, multicollinearity is of-
ten a problem in epidemiology when constructing pre-
diction models. Herein, we are aware of the inherent
multicollinearity between covariates used in model 3,
i.e. BP, total cholesterol and triacylglycerols, but this
multicollinearity did not change the overall interpreta-
tion for the associations between metabolites and risk
of type 2 diabetes. Finally, even with extensive efforts
on metabolite identification, we did not manage to an-
notate all discriminative features. Unknown metabolites
(MSI 3–4) might theoretically have provided additional
predictive power if included in the models. However,
the identified five best predictive metabolites were con-
sistently selected from the dataset among identified me-
tabolites (MSI 1–2), with or without unknown metabo-
lites, suggesting limited additional benefits of adding yet
unidentified metabolites to the models. Importantly, we
focused on identified metabolites to arrive at results that
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can be interpreted, potentially reproduced and translated
across studies.

Our study also has several strengths. First, it consti-
tutes the hitherto largest untargeted metabolite profiling
study of incident type 2 diabetes in a nested case–con-
trol setting. Second, the availability of repeated samples
10 years after baseline for a subset allowed us to inves-
tigate both long-term reproducibility of metabolites and
changes in relation to disease diagnosis and medication.
Third, for the first time, we comprehensively compared
risk predictability between different risk models includ-
ing metabolites as well as traditional risk factors a priori
selected or optimally selected, highlighting the greater
potential of optimal use of traditional risk factors.

In conclusion, we explored novel and previously
identified predictive metabolites of type 2 diabetes, pro-
viding complementary and additional information to im-
prove understanding of the pathophysiology of type 2
diabetes. However, single measurements of predictive
metabolites can only provide limited information beyond
the optimal use of traditional risk factors in relation to
risk prediction.
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