68 research outputs found

    Factors That Influence Rural and Rural Farm Income in Minnesota.

    Get PDF

    Report of the NAMMCO-ICES Workshop on Seal Modelling (WKSEALS 2020)

    Get PDF
    To support sustainable management of apex predator populations, it is important to estimate population size and understand the drivers of population trends to anticipate the consequences of human decisions. Robust population models are needed, which must be based on realistic biological principles and validated with the best available data. A team of international experts reviewed age-structured models of North Atlantic pinniped populations, including Grey seal (Halichoerus grypus), Harp seal (Pagophilus groenlandicus), and Hooded seal (Cystophora cristata). Statistical methods used to fit such models to data were compared and contrasted. Differences in biological assumptions and model equations were driven by the data available from separate studies, including observation methodology and pre-processing. Counts of pups during the breeding season were used in all models, with additional counts of adults and juveniles available in some. The regularity and frequency of data collection, including survey counts and vital rate estimates, varied. Important differences between the models concerned the nature and causes of variation in vital rates (age-dependent survival and fecundity). Parameterisation of age at maturity was detailed and time-dependent in some models and simplified in others. Methods for estimation of model parameters were reviewed and compared. They included Bayesian and maximum likelihood (ML) approaches, implemented via bespoke coding in C, C++, TMB or JAGS. Comparative model runs suggested that as expected, ML-based implementations were rapid and computationally efficient, while Bayesian approaches, which used MCMC or sequential importance sampling, required longer for inference. For grey seal populations in the Netherlands, where preliminary ML-based TMB results were compared with the outputs of a Bayesian JAGS implementation, some differences in parameter estimates were apparent. For these seal populations, further investigations are recommended to explore differences that might result from the modelling framework and model-fitting methodology, and their importance for inference and management advice. The group recommended building on the success of this workshop via continued collaboration with ICES and NAMMCO assessment groups, as well as other experts in the marine mammal modelling community. Specifically, for Northeast Atlantic harp and hooded seal populations, the workshop represents the initial step towards a full ICES benchmark process aimed at revising and evaluating new assessment models.Publisher PDFPeer reviewe

    Posterior fossa tumours in childhood: Associated speech and language disorders post-surgery

    Get PDF
    Six children aged between 6 and 16 years who had undergone surgery for the removal of a posterior fossa tumour were assessed at least one year postoperatively to determine the incidence and severity of any associated speech or language deficits. Five males and one female were included in the sample. The subjects were administered a battery of speech/language assessments including: a language screening test, an articulation test, a dysarthria assessment and a perceptual speech analysis. The results indicated that dysarthria and/or language impairment occurs in some cases subsequent to surgical removal of posterior fossa tumours. The occurrence of muteness immediately post-surgery would appear to indicate a poor prognosis for speech abilities. A possible link between the occurrence of long term language disabilities in these children and post-surgical radiotherapy is documented

    Convergence of marine megafauna movement patterns in coastal and open oceans

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Proceedings of the National Academy of Sciences of the United States of America 115 (2018): 3072-3077, doi:10.1073/pnas.1716137115.The extent of increasing anthropogenic impacts on large marine vertebrates partly depends on the animals’ movement patterns. Effective conservation requires identification of the key drivers of movement including intrinsic properties and extrinsic constraints associated with the dynamic nature of the environments the animals inhabit. However, the relative importance of intrinsic versus extrinsic factors remains elusive. We analyse a global dataset of 2.8 million locations from > 2,600 tracked individuals across 50 marine vertebrates evolutionarily separated by millions of years and using different locomotion modes (fly, swim, walk/paddle). Strikingly, movement patterns show a remarkable convergence, being strongly conserved across species and independent of body length and mass, despite these traits ranging over 10 orders of magnitude among the species studied. This represents a fundamental difference between marine and terrestrial vertebrates not previously identified, likely linked to the reduced costs of locomotion in water. Movement patterns were primarily explained by the interaction between species-specific traits and the habitat(s) they move through, resulting in complex movement patterns when moving close to coasts compared to more predictable patterns when moving in open oceans. This distinct difference may be associated with greater complexity within coastal micro-habitats, highlighting a critical role of preferred habitat in shaping marine vertebrate global movements. Efforts to develop understanding of the characteristics of vertebrate movement should consider the habitat(s) through which they move to identify how movement patterns will alter with forecasted severe ocean changes, such as reduced Arctic sea ice cover, sea level rise and declining oxygen content.Workshops funding granted by the UWA Oceans Institute, AIMS, and KAUST. AMMS was supported by an ARC Grant DE170100841 and an IOMRC (UWA, AIMS, CSIRO) fellowship; JPR by MEDC (FPU program, Spain); DWS by UK NERC and Save Our Seas Foundation; NQ by FCT (Portugal); MMCM by a CAPES fellowship (Ministry of Education)

    Marine mammals exploring the oceans pole to pole

    Get PDF
    Polar oceans are poorly monitored despite the important role they play in regulating Earth’s climate system. Marine mammals equipped with biologging devices are now being used to fill the data gaps in these logistically difficult to sample regions. Since 2002, instrumented animals have been generating exceptionally large data sets of oceanographic CTD casts (>500,000 profiles), which are now freely available to the scientific community through the MEOP data portal (http://meop.net). MEOP (Marine Mammals Exploring the Oceans Pole to Pole) is a consortium of international researchers dedicated to sharing animal-derived data and knowledge about the polar oceans. Collectively, MEOP demonstrates the power and cost-effectiveness of using marine mammals as data-collection platforms that can dramatically improve the ocean observing system for biological and physical oceanographers. Here, we review the MEOP program and database to bring it to the attention of the international community.http://www.tos.org/oceanographyam2017Mammal Research InstituteZoology and Entomolog

    Distribution and Cconnection to other Plant-Communities of Genista radiata (L.) Scop in the South Tyrol (Italy)

    Get PDF
    Es werden die Genista radiata-BestĂ€nde an der Mendel in SĂŒdtirol (Italien) beschrieben und ihr Gesellschaftsanschluß diskutiert. Das Genisto-Festucetum alpestris Peer 83 besidelt steile sĂŒdexponierte KalkhĂ€nge der hochmontanen und subalpinen Stufe und ersetzt z.T. den ZwergstrauchgĂŒrtel mit Pinus mugo. Ähnlich zusammengesetzt ist das Genisto-Festucetum alpestris pinetosum Peer 83, das in den ÂĄlockeren Erika-KiefernwĂ€ldern auftritt und bis in die tiefmontane Stufe hinunterreicht. Keinerlei syntaxonomische Bedeutung besitzt Genista radiata in den thermophilen Buschwaldgesellschaften, in denen die Pflanze lediglich eine Variante zum Orno-Ostryetum seslerietosum Peer 81 darstellt und speziell in der Saumzone anzutreffen ist. Auch in den LĂ€rchenwiesen der Kammlagen kommt Genista radiata nur sporadisch vor. Sie ist hier mit dem Festucetum nigrescentis laricetosum subass. prov. verzahnt.IstraĆŸene su vegetacijske sastojine vrste Genista radiata u juĆŸnom Tirolu i razmatrana njihova fitocenoloĆĄka pripadnost. Asocijacija Genisto-Festucetum alpestris Peer 83 nastava strme, juĆŸne vapnenačke obronke visokobrdskog i subalpskog pojasa. Subasocijacija Genisto-Festucetum alpestris pinetosum Peer 83 dolazi u rijetkim borovim ĆĄumama s crnjuĆĄom i spuĆĄta se do u niĆŸi brdski pojas. Termofilne niske ĆĄume, u kojima Genista radiata nema posebno sintaksonomsko značenje, označene su samo kao varijanta zajednice Orno-Ostryetum seslerietosum Peer 81. Genista radiata dolazi također na travnjacima s ariĆĄem, ali samo sporadično i to u mjeĆĄavini sa zajednicom Festucetum nigrescentis laricetosnm subass. prov.The Genista radiata-communities of the Mendel in the South Tyrol (Italy) are described and their connection to other plant-communities is discussed. Genisto-Festucetum alpestris Peer 83 settles on steep, south- exposed colcareous slopes of high-mountain and subalpine altitudes and replaces particularly the dwarf-shrub-belt with Firms mugo. Similar contents aire found in Genisto-F estucetum alpestris pinetasum Peer 83, which occurs in undensed Erico-Pinetum-communities and reaches down to the low-mountain-altitude. In the thermophilic bush-communities, in which Genista radiata is found only as a variant of Orneto-Ostryetum seslerie- tosum (Peer 81), the plant has no syntaxonomic importance. Genista radiata especially is found in the edge-zone. In the grassland of the larch- communities of the ridges Genista radiata appears only sporadically. Here the plant appeals in Festucetum nigrescentis laricetosum subass. prov

    Animal-borne telemetry: An integral component of the ocean observing toolkit

    Get PDF
    Animal telemetry is a powerful tool for observing marine animals and the physical environments that they inhabit, from coastal and continental shelf ecosystems to polar seas and open oceans. Satellite-linked biologgers and networks of acoustic receivers allow animals to be reliably monitored over scales of tens of meters to thousands of kilometers, giving insight into their habitat use, home range size, the phenology of migratory patterns and the biotic and abiotic factors that drive their distributions. Furthermore, physical environmental variables can be collected using animals as autonomous sampling platforms, increasing spatial and temporal coverage of global oceanographic observation systems. The use of animal telemetry, therefore, has the capacity to provide measures from a suite of essential ocean variables (EOVs) for improved monitoring of Earth's oceans. Here we outline the design features of animal telemetry systems, describe current applications and their benefits and challenges, and discuss future directions. We describe new analytical techniques that improve our ability to not only quantify animal movements but to also provide a powerful framework for comparative studies across taxa. We discuss the application of animal telemetry and its capacity to collect biotic and abiotic data, how the data collected can be incorporated into ocean observing systems, and the role these data can play in improved ocean management
    • 

    corecore