60 research outputs found

    Electronic Structure and Dynamics of Higher-Lying Excited States in Light Harvesting Complex 1 from Rhodobacter sphaeroides

    Get PDF
    Light harvesting in photosynthetic organisms involves efficient transfer of energy from peripheral antenna complexes to core antenna complexes, and ultimately to the reaction center where charge separation drives downstream photosynthetic processes. Antenna complexes contain many strongly coupled chromophores, which complicates analysis of their electronic structure. Two-dimensional electronic spectroscopy (2DES) provides information on energetic coupling and ultrafast energy transfer dynamics, making the technique well suited for the study of photosynthetic antennae. Here, we present 2DES results on excited state properties and dynamics of a core antenna complex, light harvesting complex 1 (LH1), embedded in the photosynthetic membrane of Rhodobacter sphaeroides. The experiment reveals weakly allowed higher-lying excited states in LH1 at 770 nm, which transfer energy to the strongly allowed states at 875 nm with a lifetime of 40 fs. The presence of higher-lying excited states is in agreement with effective Hamiltonians constructed using parameters from crystal structures and atomic force microscopy (AFM) studies. The energy transfer dynamics between the higher- and lower-lying excited states agree with Redfield theory calculations

    Characterization of an Aggregated Three-Dimensional Cell Culture Model by Multimodal Mass Spectrometry Imaging

    Get PDF
    Mass spectrometry imaging (MSI) is an established analytical tool capable of defining and understanding complex tissues by determining the spatial distribution of biological molecules. Three-dimensional (3D) cell culture models mimic the pathophysiological environment of in vivo tumors and are rapidly emerging as a valuable research tool. Here, multimodal MSI techniques were employed to characterize a novel aggregated 3D lung adenocarcinoma model, developed by the group to mimic the in vivo tissue. Regions of tumor heterogeneity and the hypoxic microenvironment were observed based on the spatial distribution of a variety of endogenous molecules. Desorption electrospray ionization (DESI)-MSI defined regions of a hypoxic core and a proliferative outer layer from metabolite distribution. Targeted metabolites (e.g., lactate, glutamine, and citrate) were mapped to pathways of glycolysis and the TCA cycle demonstrating tumor metabolic behavior. The first application of imaging mass cytometry (IMC) with 3D cell culture enabled single-cell phenotyping at 1 μm spatial resolution. Protein markers of proliferation (Ki-67) and hypoxia (glucose transporter 1) defined metabolic signaling in the aggregoid model, which complemented the metabolite data. Laser ablation inductively coupled plasma (LA-ICP)-MSI analysis localized endogenous elements including magnesium and copper, further differentiating the hypoxia gradient and validating the protein expression. Obtaining a large amount of molecular information on a complementary nature enabled an in-depth understanding of the biological processes within the novel tumor model. Combining powerful imaging techniques to characterize the aggregated 3D culture highlighted a future methodology with potential applications in cancer research and drug development

    Comparison of Osteosarcoma Aggregated Tumour Models with Human Tissue by Multimodal Mass Spectrometry Imaging

    Get PDF
    Osteosarcoma (OS) is the most common primary bone malignancy and largely effects adolescents and young adults, with 60% of patients under the age of 25. There are multiple cell models of OS described in vitro that express the specific genetic alterations of the sarcoma. In the work reported here, multiple mass spectrometry imaging (MSI) modalities were employed to characterise two aggregated cellular models of OS models formed using the MG63 and SAOS-2 cell lines. Phenotyping of the metabolite activity within the two OS aggregoid models was achieved and a comparison of the metabolite data with OS human tissue samples revealed relevant fatty acid and phospholipid markers. Although, annotations of these species require MS/MS analysis for confident identification of the metabolites. From the putative assignments however, it was suggested that the MG63 aggregoids are an aggressive tumour model that exhibited metastatic-like potential. Alternatively, the SAOS-2 aggregoids are more mature osteoblast-like phenotype that expressed characteristics of cellular differentiation and bone development. It was determined the two OS aggregoid models shared similarities of metabolic behaviour with different regions of OS human tissues, specifically of the higher metastatic grade

    Prasugrel versus Clopidogrel for Acute Coronary Syndromes without Revascularization

    Get PDF
    peer reviewedBACKGROUND: The effect of intensified platelet inhibition for patients with unstable angina or myocardial infarction without ST-segment elevation who do not undergo revascularization has not been delineated. METHODS: In this double-blind, randomized trial, in a primary analysis involving 7243 patients under the age of 75 years receiving aspirin, we evaluated up to 30 months of treatment with prasugrel (10 mg daily) versus clopidogrel (75 mg daily). In a secondary analysis involving 2083 patients 75 years of age or older, we evaluated 5 mg of prasugrel versus 75 mg of clopidogrel. RESULTS: At a median follow-up of 17 months, the primary end point of death from cardiovascular causes, myocardial infarction, or stroke among patients under the age of 75 years occurred in 13.9% of the prasugrel group and 16.0% of the clopidogrel group (hazard ratio in the prasugre

    Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil

    Get PDF
    An approach for assessing the inhalation bioaccessibility of Pb in the PM10 size fraction is presented, using an in vitro simulated epithelial lung fluid to represent the extracellular environment of the lung. The developed inhalation bioaccessibility method (IBM) is applied to a range of urban surface soils and mining wastes obtained from Mitrovica, Kosovo, a site where impacts upon human health following exposure to Pb have been internationally publicised. All Pb determinations were undertaken by inductively coupled plasma mass spectrometry (ICP-MS). The pseudo-total concentration of Pb (microwave acid digestion using aqua-regia) varied between matrices: smelter (20,900–72,800 mg kg− 1), topsoil (274–13,700 mg kg− 1), and tailings (2990 mg kg− 1–25,300 mg kg− 1). The in vitro inhalation bioaccessibility was typically several orders of magnitude lower: smelter (7.0–965 mg kg− 1), topsoil (9.8–1060 mg kg− 1), and tailings (0.7 mg kg− 1–49.2 mg kg− 1). The % inhalation bioaccessibility ranged from 0.02 to 11.0%, with the higher inhalation bioaccessible Pb concentrations being observed for samples from the Bosniak Mahalla area of Mitrovica (an area proposed for the relocation of internally displaced peoples). The estimated inhalation dose (for adults) calculated from the PM10 pseudo-total Pb concentration ranged from 0.369 to 1.284 μg kg− 1BW day− 1 (smelter), 0.005–0.242 μg kg− 1BW day− 1 (topsoil), and 0.053–0.446 μg kg− 1BW day− 1 (tailings). When daily inhalation doses were calculated using the bioaccessible Pb concentration the modelled exposure doses were much lower: smelter (0.0001–0.0170 μg kg− 1BW day− 1), topsoil (0.0002–0.0187 μg kg− 1BW day− 1) and tailings (0.0001–0.0009 μg kg− 1BW day− 1). Modelled for the neutral pH conditions of the interstitial lung environment, the results indicate a low potential inhalation bioaccessibility for Pb in these samples. Given the already elevated environmental Pb burden experienced by the local population, where significant prolonged dust or particulate generating activities are taking place, or where the inhaled particles are phagocytized, then inhalation exposure has the potential to significantly add to the overall Pb burden. Such data are important for local policy makers to better enable them to assess risk, especially in areas where soils/dusts have elevated levels of contamination

    Estimation of damped oscillation associated spectra from ultrafast transient absorption spectra

    No full text
    When exciting a complex molecular system with a short optical pulse, all chromophores present in the system can be excited. The resulting superposition of electronically and vibrationally excited states evolves in time, which is monitored with transient absorption spectroscopy. We present a methodology to resolve simultaneously the contributions of the different electronically and vibrationally excited states from the complete data. The evolution of the excited states is described with a superposition of damped oscillations. The amplitude of a damped oscillation cos(ωnt)exp(−γnt) as a function of the detection wavelength constitutes a damped oscillation associated spectrum DOASn(λ) with an accompanying phase characteristic φn(λ). In a case study, the cryptophyte photosynthetic antenna complex PC612 which contains eight bilin chromophores was excited by a broadband optical pulse. Difference absorption spectra from 525 to 715 nm were measured until 1 ns. The population dynamics is described by four lifetimes, with interchromophore equilibration in 0.8 and 7.5 ps. We have resolved 24 DOAS with frequencies between 130 and 1649 cm−1 and with damping rates between 0.9 and 12 ps−1. In addition, 11 more DOAS with faster damping rates were necessary to describe the “coherent artefact.” The DOAS contains both ground and excited state features. Their interpretation is aided by DOAS analysis of simulated transient absorption signals resulting from stimulated emission and ground state bleach

    Waveguide-enhanced 2D-IR spectroscopy in the gas phase

    No full text
    A method for obtaining high-quality 2D-IR spectra of gas-phase samples is presented. Time-resolved IR absorption spectroscopy techniques, such as 2D-IR spectroscopy, often require that beams are focused into the sample. This limits the exploitable overlapped path length through samples to a few millimeters. To circumvent this limitation, 2D-IR experiments have been performed within a hollow waveguide. This has enabled acquisition of 2D-IR spectra of low-concentration gas-phase samples, with more than an order of magnitude signal enhancement compared with the equivalent experiment in free space. The technique is demonstrated by application to the 2D-IR spectroscopy of iron pentacarbonyl. (C) 2013 Optical Society of America</p
    corecore