35 research outputs found
Post-harvest entomology research in the United States Department of Agriculture–Agricultural Research Service
This is a review of current post-harvest entomology research conducted by the Agricultural Research Service, the research branch of the US Department of Agriculture. The review covers both durable and perishable commodities. Research on biochemistry, genetics, physiology, monitoring and control of insects infesting stored grain, dried fruits and nuts, and processed commodities is reviewed. Research on development of quarantine treatments, particularly for fruit flies, is also reviewed, including research on thermal and irradiation treatments and a discussion of risk management for quarantine pests. Two areas of research are covered more extensively: a project to map the genome of the red flour beetle, Tribolium castaneum, and the use of near-infrared spectroscopy for detection of hidden infestations in grain, quantification of insect fragments in food, determination of quality in dried fruits, identification of insect species and age-grading insects. Future research directions are identified
Post-harvest entomology research in the United States Department of Agriculture–Agricultural Research Service
This is a review of current post-harvest entomology research conducted by the Agricultural Research Service, the research branch of the US Department of Agriculture. The review covers both durable and perishable commodities. Research on biochemistry, genetics, physiology, monitoring and control of insects infesting stored grain, dried fruits and nuts, and processed commodities is reviewed. Research on development of quarantine treatments, particularly for fruit flies, is also reviewed, including research on thermal and irradiation treatments and a discussion of risk management for quarantine pests. Two areas of research are covered more extensively: a project to map the genome of the red flour beetle, Tribolium castaneum, and the use of near-infrared spectroscopy for detection of hidden infestations in grain, quantification of insect fragments in food, determination of quality in dried fruits, identification of insect species and age-grading insects. Future research directions are identified
Parameterization Effects in the analysis of AMI Sunyaev-Zel'dovich Observations
Most Sunyaev--Zel'dovich (SZ) and X-ray analyses of galaxy clusters try to
constrain the cluster total mass and/or gas mass using parameterised models and
assumptions of spherical symmetry and hydrostatic equilibrium. By numerically
exploring the probability distributions of the cluster parameters given the
simulated interferometric SZ data in the context of Bayesian methods, and
assuming a beta-model for the electron number density we investigate the
capability of this model and analysis to return the simulated cluster input
quantities via three rameterisations. In parameterisation I we assume that the
T is an input parameter. We find that parameterisation I can hardly constrain
the cluster parameters. We then investigate parameterisations II and III in
which fg(r200) replaces temperature as a main variable. In parameterisation II
we relate M_T(r200) and T assuming hydrostatic equilibrium. We find that
parameterisation II can constrain the cluster physical parameters but the
temperature estimate is biased low. In parameterisation III, the virial theorem
replaces the hydrostatic equilibrium assumption. We find that parameterisation
III results in unbiased estimates of the cluster properties. We generate a
second simulated cluster using a generalised NFW (GNFW) pressure profile and
analyse it with an entropy based model to take into account the temperature
gradient in our analysis and improve the cluster gas density distribution. This
model also constrains the cluster physical parameters and the results show a
radial decline in the gas temperature as expected. The mean cluster total mass
estimates are also within 1 sigma from the simulated cluster true values.
However, we find that for at least interferometric SZ analysis in practice at
the present time, there is no differences in the AMI visibilities between the
two models. This may of course change as the instruments improve.Comment: 19 pages, 13 tables, 24 figure
Sunyaev-Zel'dovich observations of galaxy clusters out to the virial radius with the Arcminute Microkelvin Imager
We present observations using the Small Array of the Arcminute Microkelvin
Imager (AMI; 14-18 GHz) of four Abell and three MACS clusters spanning
0.171-0.686 in redshift. We detect Sunyaev-Zel'dovich (SZ) signals in five of
these without any attempt at source subtraction, although strong source
contamination is present. With radio-source measurements from high-resolution
observations, and under the assumptions of spherical -model,
isothermality and hydrostatic equilibrium, a Bayesian analysis of the data in
the visibility plane detects extended SZ decrements in all seven clusters over
and above receiver noise, radio sources and primary CMB imprints. Bayesian
evidence ratios range from 10^{11}:1 to 10^{43}:1 for six of the clusters and
3000:1 for one with substantially less data than the others. We present
posterior probability distributions for, e.g., total mass and gas fraction
averaged over radii internal to which the mean overdensity is 1000, 500 and
200, r_200 being the virial radius. Reaching r_200 involves some extrapolation
for the nearer clusters but not for the more-distant ones. We find that our
estimates of gas fraction are low (compared with most in the literature) and
decrease with increasing radius. These results appear to be consistent with the
notion that gas temperature in fact falls with distance (away from near the
cluster centre) out to the virial radius.Comment: 18 pages, 10 figures, submitted to MNRAS (updated authors and fixed
Figure 1
Potential for hypobaric storage as a phytosanitary treatment: mortality of Rhagoletis pomonella (Diptera: Tephritidae) in apples and effects on fruit quality
Citation: Rajshekhar Hulasare, Mark E. Payton, Guy J. Hallman, and Thomas W. Phillips "Potential for Hypobaric Storage as a Phytosanitary Treatment: Mortality of Rhagoletis pomonella (Diptera: Tephritidae) in Apples and Effects on Fruit Quality," Journal of Economic Entomology 106(3), 1173-1178, (1 June 2013). https://doi.org/10.1603/EC12343The efficacy of low-oxygen atmospheres using low pressure, referred to as hypobaric conditions, to kill egg and third-instar Rhagoletis pomonella (Walsh) in apples was investigated. Infested apples were exposed to 3.33 and 6.67 kPa in glass jars at 25 and 30°C for times ranging from 3 to 120 h. Probit analyses and lethal dose ratio tests were performed to determine differences in lethal time values. Eggs were more tolerant of low pressure compared with third-instar R. pomonella. Mortality of eggs and larvae increased with increase in time of exposure to low pressure and temperature. Lower pressures increased percent mortality of eggs, but these values were not significantly different at the pressures tested in this investigation. The LT[subscript 99] for R. pomonella eggs at 3.33 kPa was 105.98 and 51.46 h, respectively, at 25 and 30°C, which was a significant effect of the higher temperature on egg mortality. Investigation into consumer acceptance of low-pressure-treated apples was done with ‘Red Delicious’ and ‘Golden Delicious’. Apples exposed to 3.33 kPa at 25 and 30°C for 3 and 5 d were stored at 1°C for 2 wk and presented to a sensory panel for evaluation. The panelists rated treated apples with untreated controls for external and internal appearance and taste. Golden Delicious apples were unaffected for all three sensory factors across both temperatures and exposure times. Although taste was unaffected for Red Delicious, the internal and external appearances deteriorated. Use of low pressure for disinfestation and preservation of apples is a potential nonchemical alternative to chemical fumigants such as methyl bromide and phosphine
Phytosanitary Irradiation
Phytosanitary treatments disinfest traded commodities of potential quarantine pests. Phytosanitary irradiation (PI) treatments use ionizing radiation to accomplish this, and, since their international commercial debut in 2004, the use of this technology has increased by ~10% annually. Generic PI treatments (one dose is used for a group of pests and/or commodities, although not all have been tested for efficacy) are used in virtually all commercial PI treatments, and new generic PI doses are proposed, such as 300 Gy, for all insects except pupae and adult Lepidoptera (moths). Fresh fruits and vegetables tolerate PI better than any other broadly used treatment. Advances that would help facilitate the use of PI include streamlining the approval process, making the technology more accessible to potential users, lowering doses and broadening their coverage, and solving potential issues related to factors that might affect efficacy