4 research outputs found

    Seasonality of the particle number concentration and size distribution : a global analysis retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories

    Get PDF
    Aerosol particles are a complex component of the atmospheric system which influence climate directly by interacting with solar radiation, and indirectly by contributing to cloud formation. The variety of their sources, as well as the multiple transformations they may undergo during their transport (including wet and dry deposition), result in significant spatial and temporal variability of their properties. Documenting this variability is essential to provide a proper representation of aerosols and cloud condensation nuclei (CCN) in climate models. Using measurements conducted in 2016 or 2017 at 62 ground-based stations around the world, this study provides the most up-to-date picture of the spatial distribution of particle number concentration (N-tot) and number size distribution (PNSD, from 39 sites). A sensitivity study was first performed to assess the impact of data availability on N-tot's annual and seasonal statistics, as well as on the analysis of its diel cycle. Thresholds of 50% and 60% were set at the seasonal and annual scale, respectively, for the study of the corresponding statistics, and a slightly higher coverage (75 %) was required to document the diel cycle. Although some observations are common to a majority of sites, the variety of environments characterizing these stations made it possible to highlight contrasting findings, which, among other factors, seem to be significantly related to the level of anthropogenic influence. The concentrations measured at polar sites are the lowest (similar to 10(2) cm(-3)) and show a clear seasonality, which is also visible in the shape of the PNSD, while diel cycles are in general less evident, due notably to the absence of a regular day-night cycle in some seasons. In contrast, the concentrations characteristic of urban environments are the highest (similar to 10(3)-10(4) cm(-3)) and do not show pronounced seasonal variations, whereas diel cycles tend to be very regular over the year at these stations. The remaining sites, including mountain and non-urban continental and coastal stations, do not exhibit as obvious common behaviour as polar and urban sites and display, on average, intermediate N-tot (similar to 10(2)-10(3) cm(-3)). Particle concentrations measured at mountain sites, however, are generally lower compared to nearby lowland sites, and tend to exhibit somewhat more pronounced seasonal variations as a likely result of the strong impact of the atmospheric boundary layer (ABL) influence in connection with the topography of the sites. ABL dynamics also likely contribute to the diel cycle of N-tot observed at these stations. Based on available PNSD measurements, CCN-sized particles (considered here as either >50 nm or >100 nm) can represent from a few percent to almost all of N-tot, corresponding to seasonal medians on the order of similar to 10 to 1000 cm(-3), with seasonal patterns and a hierarchy of the site types broadly similar to those observed for N-tot. Overall, this work illustrates the importance of in situ measurements, in particular for the study of aerosol physical properties, and thus strongly supports the development of a broad global network of near surface observatories to increase and homogenize the spatial coverage of the measurements, and guarantee as well data availability and quality. The results of this study also provide a valuable, freely available and easy to use support for model comparison and validation, with the ultimate goal of contributing to improvement of the representation of aerosol-cloud interactions in models, and, therefore, of the evaluation of the impact of aerosol particles on climate.Peer reviewe

    The role of coarse aerosol particles as a sink of HNO3 in wintertime pollution events in the Salt Lake Valley

    No full text
    Wintertime ammonium nitrate (NH4NO3) pollution events burden urban mountain basins around the globe. In the Salt Lake Valley of Utah in the United States, such pollution events are often driven by the formation of persistent cold-air pools (PCAPs) that trap emissions near the surface for several consecutive days. As a result, secondary pollutants including fine particulate matter less than 2.5 um in diameter (PM2:5), largely in the form of NH4NO3, build up during these events and lead to severe haze. As part of an extensive measurement campaign to understand the chemical processes underlying PM2:5 formation, the 2017 Utah Winter Fine Particulate Study, water-soluble trace gases and PM2:5 constituents were continuously monitored using the ambient ion monitoring ion chromatograph (AIM-IC) system at the University of Utah campus. Gas-phase NH3, HNO3, HCl, and SO2 along with particulate NHC 4 , NaC, KC, Mg2C, Ca2C, NO3 , Cl, and SO2 4 were measured from 21 January to 21 February 2017. During the two PCAP events captured, the fine particulate matter was dominated by secondary NH4NO3. The comparison of total nitrate (HNO3 CPM2:5 NO3 ) and total NHx (NH3 CPM2:5 NHC 4 ) showed NHx was in excess during both pollution events. However, chemical composition analysis of the snowpack during the first PCAP event revealed that the total concentration of deposited NO3 was nearly 3 times greater than that of deposited NHC 4 . Daily snow composition measurements showed a strong correlation between NO3 and Ca2C in the snowpack. The presence of non-volatile salts (NaC, Ca2C, and Mg2C), which are frequently associated with coarse-mode dust, was also detected in PM2:5 by the AIM-IC during the two PCAP events, accounting for roughly 5% of total mass loading. The presence of a significant particle mass and surface area in the coarse mode during the first PCAP event was indicated by size-resolved particle measurements from an aerodynamic particle sizer. Taken together, these observations imply that atmospheric measurements of the gas-phase and fine-mode particle nitrate may not represent the total burden of nitrate in the atmosphere, implying a potentially significant role for uptake by coarse-mode dust. Using the NO3 :NHC 4 ratio observed in the snowpack to estimate the proportion of atmospheric nitrate present in the coarse mode, we estimate that the amount of secondary NH4NO3 could double in the absence of the coarse-mode sink. The underestimation of total nitrate indicates an incomplete account of the total oxidant production during PCAP events. The ability of coarse particles to permanently remove HNO3 and influence PM2:5 formation is discussed using information about particle composition and size distribution

    A global analysis of climate-relevant aerosol properties retrieved from the network of Global Atmosphere Watch (GAW) near-surface observatories

    Get PDF
    Aerosol particles are essential constituents of the Earth's atmosphere, impacting the earth radiation balance directly by scattering and absorbing solar radiation, and indirectly by acting as cloud condensation nuclei. In contrast to most greenhouse gases, aerosol particles have short atmospheric residence times, resulting in a highly heterogeneous distribution in space and time. There is a clear need to document this variability at regional scale through observations involving, in particular, the in situ near-surface segment of the atmospheric observation system. This paper will provide the widest effort so far to document variability of climate-relevant in situ aerosol properties (namely wavelength dependent particle light scattering and absorption coefficients, particle number concentration and particle number size distribution) from all sites connected to the Global Atmosphere Watch network. High-quality data from almost 90 stations worldwide have been collected and controlled for quality and are reported for a reference year in 2017, providing a very extended and robust view of the variability of these variables worldwide. The range of variability observed worldwide for light scattering and absorption coefficients, single-scattering albedo, and particle number concentration are presented together with preliminary information on their long-term trends and comparison with model simulation for the different stations. The scope of the present paper is also to provide the necessary suite of information, including data provision procedures, quality control and analysis, data policy, and usage of the ground-based aerosol measurement network. It delivers to users of the World Data Centre on Aerosol, the required confidence in data products in the form of a fully characterized value chain, including uncertainty estimation and requirements for contributing to the global climate monitoring system.Peer reviewe
    corecore