332 research outputs found

    Barley Hv CIRCADIAN CLOCK ASSOCIATED 1 and Hv PHOTOPERIOD H1 Are Circadian Regulators That Can Affect Circadian Rhythms in Arabidopsis.

    Get PDF
    Circadian clocks regulate many aspects of plant physiology and development that contribute to essential agronomic traits. Circadian clocks contain transcriptional feedback loops that are thought to generate circadian timing. There is considerable similarity in the genes that comprise the transcriptional and translational feedback loops of the circadian clock in the plant Kingdom. Functional characterisation of circadian clock genes has been restricted to a few model species. Here we provide a functional characterisation of the Hordeum vulgare (barley) circadian clock genes Hv circadian clock associated 1 (HvCCA1) and Hv photoperiodh1, which are respectively most similar to Arabidopsis thaliana circadian clock associated 1 (AtCCA1) and pseudo response regulator 7 (AtPRR7). This provides insight into the circadian regulation of one of the major crop species of Northern Europe. Through a combination of physiological assays of circadian rhythms in barley and heterologous expression in wild type and mutant strains of A. thaliana we demonstrate that HvCCA1 has a conserved function to AtCCA1. We find that Hv photoperiod H1 has AtPRR7-like functionality in A. thaliana and that the effects of the Hv photoperiod h1 mutation on photoperiodism and circadian rhythms are genetically separable.ZR is grateful to the National Institute of Agricultural Botany for the Award of Scholarship. We acknowledge funding from a Marie Curie Early Stage Training project MEST-CT-2005-020526 for JK and the BBSRC-DTP for funding SC. AARW and MCM are grateful to the BBSRC for the award of BBSRC Grant BB/M006212/1, which supported aspects of the study.This is the final published version. It first appeared at http://dx.doi.org/10.1371/journal.pone.012744

    Waterfowl recently infected with low pathogenic avian influenza exhibit reduced local movement and delayed migration

    Get PDF
    Understanding relationships between infection and wildlife movement patterns is important for predicting pathogen spread, especially for multispecies pathogens and those that can spread to humans and domestic animals, such as avian influenza viruses (AIVs). Although infection with low pathogenic AIVs is generally considered asymptomatic in wild birds, prior work has shown that influenza-infected birds occasionally delay migration and/or reduce local movements relative to their uninfected counterparts. However, most observational research to date has focused on a few species in northern Europe; given that influenza viruses are widespread globally and outbreaks of highly pathogenic strains are increasingly common, it is important to explore influenza–movement relationships across more species and regions. Here, we used telemetry data to investigate relationships between influenza infection and movement behavior in 165 individuals from four species of North American waterfowl that overwinter in California, USA. We studied both large-scale migratory and local overwintering movements and found that relationships between influenza infection and movement patterns varied among species. Northern pintails (Anas acuta) with antibodies to avian influenza, indicating prior infection, made migratory stopovers that averaged 12 days longer than those with no influenza antibodies. In contrast, greater white-fronted geese (Anser albifrons) with antibodies to avian influenza made migratory stopovers that averaged 15 days shorter than those with no antibodies. Canvasbacks (Aythya valisineria) that were actively infected with influenza upon capture in the winter delayed spring migration by an average of 28 days relative to birds that were uninfected at the time of capture. At the local scale, northern pintails and canvasbacks that were actively infected with influenza used areas that were 7.6 and 4.9 times smaller than those of uninfected ducks, respectively, during the period of presumed active influenza infection. We found no evidence for an influence of active influenza infection on local movements of mallards (Anas platyrhynchos). These results suggest that avian influenza can influence waterfowl movements and illustrate that the relationships between avian influenza infection and wild bird movements are context- and species-dependent. More generally, understanding and predicting the spread of multihost pathogens requires studying multiple taxa across space and time

    Ensuring that COVID-19 research is inclusive: guidance from the NIHR INCLUDE project

    Get PDF
    Objective: To provide guidance to researchers, funders, regulators and study delivery teams to ensure that research on COVID-19 is inclusive, particularly of groups disproportionately affected by COVID-19 and who may have been historically under-served by research. Summary of key points: Groups who are disproportionately affected by COVID-19 include (but are not limited to) older people, people with multiple long-term conditions, people with disabilities, people from Black, Asian and Ethnic minority groups, people living with obesity, people who are socioeconomically deprived and people living in care homes. All these groups are under-served by clinical research, and there is an urgent need to rectify this if COVID-19 research is to deliver relevant evidence for these groups who are most in need. We provide a framework and checklists for addressing key issues when designing and delivering inclusive COVID-19 research, based on the National Institute for Health Research INnovations in CLinical trial design and delivery for the UnDEr-served project roadmap. Strong community engagement, codevelopment and prioritisation of research questions and interventions are essential. Under-served groups should be represented on funding panels and ethics committees, who should insist on the removal of barriers to participation. Exclusion criteria should be kept to a minimum; intervention delivery and outcome measurement should be simple, flexible and tailored to the needs of different groups, and local advice on the best way to reach and engage with under-served communities should be taken by study delivery teams. Data on characteristics that allow identification of under-served groups must be collected, analyses should include these data to enable subgroup comparisons and results should be shared with under-served groups at an early stage. Conclusion: Inclusive COVID-19 research is a necessity, not a luxury, if research is to benefit all the communities it seeks to serve. It requires close engagement with under-served groups and attention to aspects of study topic, design, delivery, analysis and dissemination across the research life cycle

    Reconnection dynamics and mutual friction in quantum turbulence

    Get PDF
    We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in 4He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles

    Studying the Long-term Impact of COVID-19 in Kids (SLICK). Healthcare use and costs in children and young people following community-acquired SARS-CoV-2 infection:protocol for an observational study using linked primary and secondary routinely collected healthcare data from England, Scotland and Wales

    Get PDF
    IntroductionSARS-CoV-2 infection rarely causes hospitalisation in children and young people (CYP), but mild or asymptomatic infections are common. Persistent symptoms following infection have been reported in CYP but subsequent healthcare use is unclear. We aim to describe healthcare use in CYP following community-acquired SARS-CoV-2 infection and identify those at risk of ongoing healthcare needs.Methods and analysisWe will use anonymised individual-level, population-scale national data linking demographics, comorbidities, primary and secondary care use and mortality between 1 January 2019 and 1 May 2022. SARS-CoV-2 test data will be linked from 1 January 2020 to 1 May 2022. Analyses will use Trusted Research Environments: OpenSAFELY in England, Secure Anonymised Information Linkage (SAIL) Databank in Wales and Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 in Scotland (EAVE-II). CYP aged ≥4 and <18 years who underwent SARS-CoV-2 reverse transcription PCR (RT-PCR) testing between 1 January 2020 and 1 May 2021 and those untested CYP will be examined.The primary outcome measure is cumulative healthcare cost over 12 months following SARS-CoV-2 testing, stratified into primary or secondary care, and physical or mental healthcare. We will estimate the burden of healthcare use attributable to SARS-CoV-2 infections in the 12 months after testing using a matched cohort study of RT-PCR positive, negative or untested CYP matched on testing date, with adjustment for confounders. We will identify factors associated with higher healthcare needs in the 12 months following SARS-CoV-2 infection using an unmatched cohort of RT-PCR positive CYP. Multivariable logistic regression and machine learning approaches will identify risk factors for high healthcare use and characterise patterns of healthcare use post infection.Ethics and disseminationThis study was approved by the South-Central Oxford C Health Research Authority Ethics Committee (13/SC/0149). Findings will be preprinted and published in peer-reviewed journals. Analysis code and code lists will be available through public GitHub repositories and OpenCodelists with meta-data via HDR-UK Innovation Gateway

    Foundations of Translational Ecology

    Get PDF
    Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today\u27s complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context-specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use-driven, actionable science. Moreover, addressing research questions that arise from on-the-ground management issues – as opposed to the top-down or expert-oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long-term, sustained engagement between partners

    The Wolbachia Genome of Brugia malayi: Endosymbiont Evolution within a Human Pathogenic Nematode

    Get PDF
    Complete genome DNA sequence and analysis is presented for Wolbachia, the obligate alpha-proteobacterial endosymbiont required for fertility and survival of the human filarial parasitic nematode Brugia malayi. Although, quantitatively, the genome is even more degraded than those of closely related Rickettsia species, Wolbachia has retained more intact metabolic pathways. The ability to provide riboflavin, flavin adenine dinucleotide, heme, and nucleotides is likely to be Wolbachia's principal contribution to the mutualistic relationship, whereas the host nematode likely supplies amino acids required for Wolbachia growth. Genome comparison of the Wolbachia endosymbiont of B. malayi (wBm) with the Wolbachia endosymbiont of Drosophila melanogaster (wMel) shows that they share similar metabolic trends, although their genomes show a high degree of genome shuffling. In contrast to wMel, wBm contains no prophage and has a reduced level of repeated DNA. Both Wolbachia have lost a considerable number of membrane biogenesis genes that apparently make them unable to synthesize lipid A, the usual component of proteobacterial membranes. However, differences in their peptidoglycan structures may reflect the mutualistic lifestyle of wBm in contrast to the parasitic lifestyle of wMel. The smaller genome size of wBm, relative to wMel, may reflect the loss of genes required for infecting host cells and avoiding host defense systems. Analysis of this first sequenced endosymbiont genome from a filarial nematode provides insight into endosymbiont evolution and additionally provides new potential targets for elimination of cutaneous and lymphatic human filarial disease

    An improved pig reference genome sequence to enable pig genetics and genomics research.

    Get PDF
    BACKGROUND: The domestic pig (Sus scrofa) is important both as a food source and as a biomedical model given its similarity in size, anatomy, physiology, metabolism, pathology, and pharmacology to humans. The draft reference genome (Sscrofa10.2) of a purebred Duroc female pig established using older clone-based sequencing methods was incomplete, and unresolved redundancies, short-range order and orientation errors, and associated misassembled genes limited its utility. RESULTS: We present 2 annotated highly contiguous chromosome-level genome assemblies created with more recent long-read technologies and a whole-genome shotgun strategy, 1 for the same Duroc female (Sscrofa11.1) and 1 for an outbred, composite-breed male (USMARCv1.0). Both assemblies are of substantially higher (>90-fold) continuity and accuracy than Sscrofa10.2. CONCLUSIONS: These highly contiguous assemblies plus annotation of a further 11 short-read assemblies provide an unprecedented view of the genetic make-up of this important agricultural and biomedical model species. We propose that the improved Duroc assembly (Sscrofa11.1) become the reference genome for genomic research in pigs
    corecore