145 research outputs found
Incidence, Risk Factors, and Outcomes of Patients Who Develop Mucosal Barrier Injury-Laboratory Confirmed Bloodstream Infections in the First 100 Days after Allogeneic Hematopoietic Stem Cell Transplant
Importance: Patients undergoing hematopoietic stem cell transplant (HSCT) are at risk for bloodstream infection (BSI) secondary to translocation of bacteria through the injured mucosa, termed mucosal barrier injury-laboratory confirmed bloodstream infection (MBI-LCBI), in addition to BSI secondary to indwelling catheters and infection at other sites (BSI-other). Objective: To determine the incidence, timing, risk factors, and outcomes of patients who develop MBI-LCBI in the first 100 days after HSCT. Design, Setting, and Participants: A case-cohort retrospective analysis was performed using data from the Center for International Blood and Marrow Transplant Research database on 16875 consecutive pediatric and adult patients receiving a first allogeneic HSCT from January 1, 2009, to December 31, 2016. Patients were classified into 4 categories: MBI-LCBI (1481 [8.8%]), MBI-LCBI and BSI-other (698 [4.1%]), BSI-other only (2928 [17.4%]), and controls with no BSI (11768 [69.7%]). Statistical analysis was performed from April 5 to July 17, 2018. Main Outcomes and Measures: Demographic characteristics and outcomes, including overall survival, chronic graft-vs-host disease, and transplant-related mortality (only for patients with malignant disease), were compared among groups. Results: Of the 16875 patients in the study (9737 [57.7%] male; median [range] age, 47 [0.04-82] years) 13686 (81.1%) underwent HSCT for a malignant neoplasm, and 3189 (18.9%) underwent HSCT for a nonmalignant condition. The cumulative incidence of MBI-LCBI was 13% (99% CI, 12%-13%) by day 100, and the cumulative incidence of BSI-other was 21% (99% CI, 21%-22%) by day 100. Median (range) time from transplant to first MBI-LCBI was 8 (<1 to 98) days vs 29 (<1 to 100) days for BSI-other. Multivariable analysis revealed an increased risk of MBI-LCBI with poor Karnofsky/Lansky performance status (hazard ratio [HR], 1.21 [99% CI, 1.04-1.41]), cord blood grafts (HR, 2.89 [99% CI, 1.97-4.24]), myeloablative conditioning (HR, 1.46 [99% CI, 1.19-1.78]), and posttransplant cyclophosphamide graft-vs-host disease prophylaxis (HR, 1.85 [99% CI, 1.38-2.48]). One-year mortality was significantly higher for patients with MBI-LCBI (HR, 1.81 [99% CI, 1.56-2.12]), BSI-other (HR, 1.81 [99% CI, 1.60-2.06]), and MBI-LCBI plus BSI-other (HR, 2.65 [99% CI, 2.17-3.24]) compared with controls. Infection was more commonly reported as a cause of death for patients with MBI-LCBI (139 of 740 [18.8%]), BSI (251 of 1537 [16.3%]), and MBI-LCBI plus BSI (94 of 435 [21.6%]) than for controls (566 of 4740 [11.9%]). Conclusions and Relevance: In this cohort study, MBI-LCBI, in addition to any BSIs, were associated with significant morbidity and mortality after HSCT. Further investigation into risk reduction should be a clinical and scientific priority in this patient population
A mathematical framework for critical transitions: normal forms, variance and applications
Critical transitions occur in a wide variety of applications including
mathematical biology, climate change, human physiology and economics. Therefore
it is highly desirable to find early-warning signs. We show that it is possible
to classify critical transitions by using bifurcation theory and normal forms
in the singular limit. Based on this elementary classification, we analyze
stochastic fluctuations and calculate scaling laws of the variance of
stochastic sample paths near critical transitions for fast subsystem
bifurcations up to codimension two. The theory is applied to several models:
the Stommel-Cessi box model for the thermohaline circulation from geoscience,
an epidemic-spreading model on an adaptive network, an activator-inhibitor
switch from systems biology, a predator-prey system from ecology and to the
Euler buckling problem from classical mechanics. For the Stommel-Cessi model we
compare different detrending techniques to calculate early-warning signs. In
the epidemics model we show that link densities could be better variables for
prediction than population densities. The activator-inhibitor switch
demonstrates effects in three time-scale systems and points out that excitable
cells and molecular units have information for subthreshold prediction. In the
predator-prey model explosive population growth near a codimension two
bifurcation is investigated and we show that early-warnings from normal forms
can be misleading in this context. In the biomechanical model we demonstrate
that early-warning signs for buckling depend crucially on the control strategy
near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Outbreak of severe vomiting in dogs associated with a canine enteric coronavirus, United Kingdom
The lack of population health surveillance for companion animal populations leaves them vulnerable to the effects of novel diseases without means of early detection. We present evidence on the effectiveness of a system that enabled early detection and rapid response to a canine gastroenteritis outbreak in the United Kingdom. In January 2020, prolific vomiting among dogs was sporadically reported in the United Kingdom. Electronic health records from a nationwide sentinel network of veterinary practices confirmed a significant increase in dogs with signs of gastroenteric disease. Male dogs and dogs living with other vomiting dogs were more likely to be affected. Diet and vaccination status were not associated with the disease; however, a canine enteric coronavirus was significantly associated with illness. The system we describe potentially fills a gap in surveillance in neglected populations and could provide a blueprint for other countries
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
Unexpected circular radio objects at high Galactic latitude
Large scale structure and cosmolog
Evaluation of a model for induction of periodontal disease in dogs
There are several methods for inducing periodontal disease in animal models, being the bone defect one of the most reported. This study aimed to evaluate this model, through clinical, radiographic, tomographic and histological analyzes, thus providing standardized data for future regenerative works. Twelve dogs were subjected to the induction protocol. In a first surgical procedure, a mucoperiosteal flap was made on the buccal aspect of the right third and fourth premolars and a defect was produced exposing the furcation and mesial and distal roots, with dimensions: 5mm coronoapical, 5mm mesiodistal, and 3mm buccolingual. Periodontal ligament and cementum were curetted and the defect was filled with molding polyester, which was removed after 21 days on new surgical procedure. Clinical and radiographic examinations were performed after the two surgeries and before the collection of parts for dental tomography and histological analysis. All animals showed grade II furcation exposure in both teeth. Clinical attachment level increased after induction. Defect size did not change for coronoapical and buccolingual measurements, while mesiodistal size was significantly higher than at the time of defect production. Radiographic analysis showed decreased radiopacity and discontinuity of lamina dura in every tooth in the furcation area. The horizontal progression of the disease was evident in micro-computed tomography and defect content in the histological analysis. Therefore, it is concluded that this method promotes the induction of periodontal disease in dogs in a standardized way, thus being a good model for future work
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
- …