74 research outputs found

    Are Purple Hermit Crabs (Coenobita brevimanus) Seed Dispersers or Predators?

    Full text link
    Vertebrate frugivores play an important role in forests by dispersing seeds and helping improve germination through gut passage. Some frugivores may also be seed predators, where the seed is destroyed through gut passage. On the island of Saipan, the native frugivores are birds, bats, and crabs. This experiment focused on purple hermit crabs, Coenobita brevimanus, which are known to consume fruits, but it is unknown whether purple hermit crabs disperse or predate the seeds they consume. A maximum of ten purple hermit crabs, ranging in size from medium to large individuals, were captured from the forest and kept in captivity. In captivity, they were fed native fruits including Premna (Premna mariannarum or Premna paulobarbata), Ficus (Ficus prolixa), Aglaia (Lansium parasiticum), and Guamia (Guamia mariannae) and non-native fruits including papaya (Carica papaya) collected in the wild. The cage was inspected to see if fruits were consumed but the seeds were not ingested, and the fecal matter was searched for damaged seeds (crushed or in pieces) or undamaged seeds (whole or intact). Analysis of predation or dispersal was done using logistic regression. It was hypothesized that purple hermit crabs are beneficial seed dispersers, passing most seeds unharmed for both native and non-native fruiting tree species. As beneficial frugivores, purple hermit crabs could play a significant role in dispersing seeds in the forests of Saipan

    Introduction to the Special Issue: The Role of Seed Dispersal in Plant Populations: Perspectives and Advances in a Changing World

    Get PDF
    Despite the importance of seed dispersal as a driving process behind plant community assembly, our understanding of the role of seed dispersal in plant population persistence and spread remains incomplete. As a result, our ability to predict the effects of global change on plant populations is hampered. We need to better understand the fundamental link between seed dispersal and population dynamics in order to make predictive generalizations across species and systems, to better understand plant community structure and function, and to make appropriate conservation and management responses related to seed dispersal. To tackle these important knowledge gaps, we established the CoDisperse Network and convened an interdisciplinary, NSF-sponsored Seed Dispersal Workshop in 2016, during which we explored the role of seed dispersal in plant population dynamics (NSF DEB Award # 1548194). In this Special Issue, we consider the current state of seed dispersal ecology and identify the following collaborative research needs: (i) the development of a mechanistic understanding of the movement process influencing dispersal of seeds; (ii) improved quantification of the relative influence of seed dispersal on plant fitness compared to processes occurring at other life history stages; (iii) an ability to scale from individual plants to ecosystems to quantify the influence of dispersal on ecosystem function; and (iv) the incorporation of seed dispersal ecology into conservation and management strategies

    Seed dispersal increases local species richness and reduces spatial turnover of tropical tree seedlings

    Get PDF
    Dispersal is thought to be a key process underlying the high spatial diversity of tropical forests. Just how important dispersal is in structuring plant communities is nevertheless an open question because it is very difficult to isolate dispersal from other processes, and thereby measure its effect. Using a unique situation, the loss of vertebrate seed dispersers on the island of Guam and their presence on the neighboring islands of Saipan and Rota, we quantify the contribution of vertebrate seed dispersal to spatial patterns of diversity of tree seedlings in treefall gaps. The presence of vertebrate seed dispersers approximately doubled seedling species richness within canopy gaps and halved species turnover among gaps. Our study demonstrates that dispersal plays a key role in maintaining local and regional patterns of diversity, and highlights the potential for ongoing declines in vertebrate seed dispersers to profoundly alter tropical forest composition

    Employing Plant Functional Groups to Advance Seed Dispersal Ecology and Conservation

    Get PDF
    Seed dispersal enables plants to reach hospitable germination sites and escape natural enemies. Understanding when and how much seed dispersal matters to plant fitness is critical for understanding plant population and community dynamics. At the same time, the complexity of factors that determine if a seed will be successfully dispersed and subsequently develop into a reproductive plant is daunting. Quantifying all factors that may influence seed dispersal effectiveness for any potential seed-vector relationship would require an unrealistically large amount of time, materials and financial resources. On the other hand, being able to make dispersal predictions is critical for predicting whether single species and entire ecosystems will be resilient to global change. Building on current frameworks, we here posit that seed dispersal ecology should adopt plant functional groups as analytical units to reduce this complexity to manageable levels. Functional groups can be used to distinguish, for their constituent species, whether it matters (i) if seeds are dispersed, (ii) into what context they are dispersed and (iii) what vectors disperse them. To avoid overgeneralization, we propose that the utility of these functional groups may be assessed by generating predictions based on the groups and then testing those predictions against species-specific data. We suggest that data collection and analysis can then be guided by robust functional group definitions. Generalizing across similar species in this way could help us to better understand the population and community dynamics of plants and tackle the complexity of seed dispersal as well as its disruption

    Richness and resilience in the Pacific: DNA metabarcoding enables parallelized evaluation of biogeographic patterns

    Get PDF
    Islands make up a large proportion of Earth\u27s biodiversity, yet are also some of the most sensitive systems to environmental perturbation. Biogeographic theory predicts that geologic age, area, and isolation typically drive islands\u27 diversity patterns, and thus potentially impact non-native spread and community homogenization across island systems. One limitation in testing such predictions has been the difficulty of performing comprehensive inventories of island biotas and distinguishing native from introduced taxa. Here, we use DNA metabarcoding and statistical modelling as a high throughput method to survey community-wide arthropod richness, the proportion of native and non-native species, and the incursion of non-natives into primary habitats on three archipelagos in the Pacific – the Ryukyus, the Marianas and Hawaii – which vary in age, isolation and area. Diversity patterns largely match expectations based on island biogeography theory, with the oldest and most geographically connected archipelago, the Ryukyus, showing the highest taxonomic richness and lowest proportion of introduced species. Moreover, we find evidence that forest habitats are more resilient to incursions of non-natives in the Ryukyus than in the less taxonomically rich archipelagos. Surprisingly, we do not find evidence for biotic homogenization across these three archipelagos: the assemblage of non-native species on each island is highly distinct. Our study demonstrates the potential of DNA metabarcoding to facilitate rapid estimation of biogeographic patterns, the spread of non-native species, and the resilience of ecosystems

    Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change

    Get PDF
    As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward

    Consequences of Intraspecific Variation in Seed Dispersal for Plant Demography, Communities, Evolution and Global Change

    Get PDF
    As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward

    The Role of Trust in Public Attitudes toward Invasive Species Management on Guam: A Case Study

    Get PDF
    Public attitudes toward invasive alien species management and trust in managers’ ability to effectively manage non-native species can determine public support for conservation action. Guam has experienced widespread species loss and ecosystem transformation due to invasive species. Despite Guam’s long history with invasives and efforts to eradicate them, we know little about the sociological context of invasive species. Using focused group discussions, we explore public attitudes toward invasive species management. Respondents expressed support for management activities and a desire to participate directly in conservation actions. Participants also expressed frustration with government institutions and lack of confidence in managers’ abilities to control invasive species. Perceptions of managers’ trustworthiness, communication with managers, and positive personal experiences with managers were related to positive attitudes about management and support for existing initiatives
    • …
    corecore