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Abstract. As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, 
species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, 
range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dis-
persal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by 
complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation 
in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the 
sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our under-
standing of the role of dispersal in mediating the dynamics of communities and their response to global change. In 
this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and 
emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation 
in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with 
consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with 
recommendations for moving this field of research forward.

Keywords: Global change; interspecific; intraspecific; long-distance dispersal; population; seed dispersal; spread; 
variability; within species.

Introduction
For most plants, seed dispersal represents the main op-
portunity to move and thus has an important impact 
on plant fitness, species distributions, community com-
position and patterns of biodiversity (e.g. Merritt et  al. 
2010; Vellend 2010; Kroiss and Hillerslambers 2015). 
However, models that predict extinction risk of species, 
range shifts and biodiversity loss rarely incorporate real-
istic dispersal mechanisms or distances, and tend to 
assume either global or no dispersal (e.g. Engler et  al. 
2011; Bateman et al. 2013). When these models include 
a more realistic representation of seed dispersal, they 
tend to rely on mean estimates of dispersal that are as-
sumed to be identical across individuals within a spe-
cies (e.g. Miller and McGill 2018). By focusing on mean 
population (or species) estimates, variation among in-
dividuals or variability caused by complex spatial and 
temporal dynamics is ignored. This variation can lead to 
differences in their seed dispersal effectiveness (sensu 
Schupp et al. 2010) as well as in their contributions to 
long-distance dispersal (e.g. Jordano 2017) and gene 
flow (Saastamoinen et al. 2018). These differences can 
have important consequences for our ability to under-
stand and predict plant population dynamics, local to 
regional biogeographic patterns of species and commu-
nities, and ecosystem processes.

Individual variation in the seed dispersal process is 
multifaceted and can include differences in the number 
of seeds dispersed (e.g. Jordano and Schupp 2000), 
the specific traits of the dispersed seeds (Wang and 
Ives 2017), the treatment of the seed during transit 
(Traveset et al. 2007), the dispersal distance (e.g. Thiede 
and Augspurger 1996) and the quality of the habitat in 
which they are deposited (i.e. as described by the seed-
scape, sensu Beckman and Rogers 2013). The causes of 

individual variation in dispersal includes both intrinsic 
traits of plants (e.g. differences in seed crop size, fruit 
or seed size, plant height, etc.) and extrinsic character-
istics of the environment (e.g. fruiting neighbourhood, 
habitat structure, community of seed-dispersing ani-
mals; Schupp et  al. 2019). It is also important to rec-
ognize that many plant traits affecting seed dispersal, 
such as fruit diameter, vary not only among individuals, 
but also within individuals and across years (González-
Varo and Traveset 2016; Herrera 2017). Variability in 
seed dispersal is well documented and is present re-
gardless of the seed dispersal mechanism (see section 
Seed Dispersal is Influenced by Intrinsic and Extrinsic 
Variability below, and Schupp, this issue). However, the 
magnitudes and consequences of intraspecific variation 
in seed dispersal are poorly understood. We use the 
term intraspecific variability throughout to capture both 
inter- and intra-individual variability in the dispersal of 
seeds within species. We acknowledge that the conse-
quences of such variations may sometimes diverge, es-
pecially with respect to the evolution of dispersal, but 
would generally be similar, regardless of the source of 
variation.

We propose that intraspecific variation in seed 
dispersal has important implications for our under-
standing of plant fitness, as well as population, com-
munity and landscape dynamics. This is because 
dispersal estimates based on population means 
are not the same as dispersal estimates that con-
sider individual variation (Box 1 and Box 2). Chesson 
has called this effect non-linear averaging (Chesson 
1996), and it is based on the mathematical fact that 
a non-linear function evaluated at its average input 
values does not yield the same result as evaluating 
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the function over a distribution of input values and 
then averaging its conditional results. Jensen’s in-
equality for convex and concave functions is a spe-
cific example of non-linear averaging. For example, 
if the number of seeds produced by an individual is 
a concave function of its biomass, then Jensen’s in-
equality (Jensen 1906) implies that variation among 

individuals in biomass would reduce the population-
level mean seed production compared to seed pro-
duction predicted from mean biomass. Alternatively, 
if the mean dispersal distance is a convex function 
with plant height, then variation among individuals 
in plant height would increase the population-level 
mean dispersal distance compared to dispersal 

Box 1.  Intraspecific variation in dispersal and non-linear averaging. Seed dispersal distances from parent 
trees for three species of toucans (Ramphastidae) in the New World tropics, A) collared aracari (Pteroglossus 
torquatus), B) keel-billed toucan (Ramphastos sulfuratus) and C) many-banded aracari (Pteroglossus pluricinctus). 
Dispersal kernels were generated by combining animal movements from 12 to 23 radio-tracked birds and gut 
retention times (for Virola koschnyi; A, B, Jones (2017) and Virola flexuosa seeds; C, Holbrook and Loiselle (2007, 
2009)). Gut retention time was based on trials with captive birds, so a single distribution was used with the aver-
age gut retention time as the mean in a gamma distribution. We used an exponential distribution to simulate 
animal movement using four scenarios (low extreme, high extreme, population, individual) and then combined 
those with simulated gut retention times. For animal movement, exponential distributions were fitted to the 
radio-tracked individual with the lowest average movement (low extreme) and the individual with the highest 
average movement (high extreme) to illustrate the range in individual variation in movement. The population-
level kernel (population) was fitted using movement data pooled from all individual birds, and the individual-level 
kernel (individual) used data from each individual separately (i.e. each individual had their own fitted distribu-
tion to movement prior to combining across individuals). These results highlight the differences in seed dispersal 
distances generated by variation in animal movement. They also demonstrate that dispersal kernels generated 
from the mean population data are not the same as those created from individual kernels. In this particular 
example, the population kernel underestimates the number of long-distance dispersal (LDD) events (the tail of 
the curve). For example, with V. flexuosa trees in the Ecuadorian Amazon, we defined LDD events as those where 
seeds were deposited >500 m from their origin by many-banded aracari. The percentage of LDD was 0.6 % under 
the population-level model, compared to 3.9 % using data that incorporated variation in movement among indi-
viduals. For Costa Rican Ramphastids, we defined LDD events as those >200 m. The results were similar, with the 
population model underestimating LDD events compared to the individual-based model (collared aracari—3.7 % 
with population model, 6.8 % with individual model; keel-billed toucan—7.3 % with population model, 9.6 % with 
individual model). Data are available as Supporting Information - Appendix S2. 
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distances predicted from mean plant height. In sto-
chastic simulations, models based on species- or 
population-level average dispersal kernels may 
yield results that are systematically but unpredict-
ably biased in terms of direction and magnitude. 
Conservation and management efforts require ac-
curate predictions for how species may respond 
under different management and global change 
scenarios. With sufficient time, even small system-
atic biases that may arise by ignoring variation in 
dispersal have the potential to compound into large 
misrepresentations.

In this manuscript, we synthesize recent research 
that examines intraspecific variation in seed dispersal 
and its implications for plant ecology to evaluate our 
current understanding and to recommend avenues 
for future research to fill remaining knowledge gaps. 
First, we present a brief overview of how seed dispersal 
is influenced by intrinsic and extrinsic variability; for 
more thorough reviews see Schupp (this issue), Côrtes 
and Uriarte (2012), McConkey et al. (2012), Beckman 
and Rogers (2013), Zwolak (2018). We do not discuss 
what causes rapid changes in trait variability in plants 
in any detail, but instead refer interested readers to 

Box 2. Intraspecific variation in dispersal and kurtosis. To illustrate that variability in mean dispersal distance creates 
more leptokurtic dispersal kernels, we can imagine a population of individuals (seeds) each of which exhibits a diffusive 
movement but whose mean dispersal distance (as determined by their individual diffusion constant) vary. In (A), the 
distribution among individual mean dispersal distances is gamma distributed with a subsampling of 200 individuals 
from this distribution shown as coloured points (shape parameter (s) = 4, scale parameter (a) = 0.25, mean dispersal 
distance = s * a = 1 m). In (B), the Gaussian dispersal kernels for each of these 200 individuals are shown using the 
same colours, and the Gaussian dispersal kernel of the ‘average’ individual (i.e. assuming the mean dispersal distance 
of 1 m from the gamma distribution) is shown in black. In (C), the population-level dispersal kernel (red) of the heter-
ogenous population is more leptokurtic than the dispersal kernel of a homogenous population where all individuals 
have the same mean dispersal distance (black). The population-level dispersal kernel k is calculated by conditioning, 
i.e.  k(v) =

´∞
0 knorm v

L/Lp(L)dL where knorm is the density of a standard Gaussian and p(L) is the density of a gamma 
distribution. Increasing the amount of individual variation leads to more leptokurtic dispersal kernels [see Supporting 
Information—Appendix S1]. Simulation data are available as Supporting Information - Appendix S3.
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Johnson et  al. (2019). Then, we discuss the conse-
quences of intraspecific variation in seed dispersal for 
local population dynamics, spatial spread, community 
structure and dynamics, and evolution, and argue 
that this intraspecific variation in dispersal is not sim-
ply adding noise, but altering dispersal processes and 
patterns. To conclude, we discuss intraspecific varia-
tion in seed dispersal within the context of anthropo-
genic global change and suggest directions for future 
research.

Seed Dispersal Is Influenced by Intrinsic 
and Extrinsic Variability
Intrinsic and extrinsic factors influence the seed dis-
persal process and variability in these factors contrib-
utes to intraspecific variability in dispersal (Box 1, see 
Schupp, this issue, for a detailed review). Approximately 
one quarter of trait variability within plant communities 
exists within species (i.e. morphological and physio-
logical traits; Siefert et al. 2015). We highlight intraspe-
cific variability in four types of traits that are known to 
underlie intraspecific variability in dispersal: fruit and 
seed size, fruit and seed crop size, plant height and 
dispersal-specific structures. We also briefly introduce 
several extrinsic factors that can cause intraspecific 
variation in dispersal. Variation in these intrinsic and ex-
trinsic factors potentially has significant consequences 
for plant demography and community composition 
through its impacts on number of seeds dispersed, the 
seedscape in which seeds land and the frequency of 
long-distance dispersal events.

Fruit and seed size

Fruit and seed size are highly variable both within and 
among individual plants (Michaels et al. 1988), and this 
variability influences seed dispersal in a variety of ways. 
For abiotic dispersal, size influences dispersal distance 
as smaller seeds are typically dispersed further by water 
(e.g. Delefosse et al. 2016) and wind (e.g. Skarpaas et al. 
2011). For endozoochorous and synzoochorous (where 
animals intentionally transport seeds without ingestion) 
dispersers, variation in fruit diameter and seed size can 
affect how many and which disperser species are able to 
feed on an individual plant (Galetti et al. 2013; González-
Varo and Traveset 2016), how seeds are processed (e.g. 
swallowed or regurgitated, Levey 1987; cached or eaten, 
Jansen et al. 2004; Gómez et al. 2008) and how far seeds 
are moved (Muñoz and Bonal 2008). Individual variation 
in fruit and seed size and individual variation in the traits 
of the dispersal agents interact to mediate the realized 
disperser assemblages of each fruits. This interaction in 

intrinsic and extrinsic variability has consequences for 
seed dispersal (Zwolak 2018).

Fecundity
Individual variation in fecundity has important impli-
cations for both long-distance dispersal and number 
of seeds dispersed, particularly in plants with wind or 
endozoochorous dispersal (Jordano and Schupp 2000; 
Norghauer et al. 2011). For wind-dispersed plants, highly 
fecund individuals tend to have longer maximum dis-
persal distances because increasing the number of 
seeds released increases the probability of some seeds 
catching rare updrafts that result in long-distance dis-
persal (Nathan et  al. 2002; Norghauer et  al. 2011; 
Augspurger et  al. 2017). Similarly, larger crop sizes for 
endozoochorous dispersal may also increase the prob-
ability of rare, long-distance dispersal events by animals 
(e.g. Prunus mahaleb trees, Jordano and Schupp 2000). 
The consequences of individual variation in fecundity 
have not, to our knowledge, been explored for other dis-
persal modes, but are potentially important with any 
dispersal system since increasing crop size increases the 
number of dispersal events and thus the probability of a 
rare long-distance dispersal event.

Plant height
Plant height explains much of the variation in dispersal 
distance across plant species (Thomson et  al. 2011; 
Tamme et al. 2014; Thomson et al. 2018). Together with 
diaspore terminal velocity and seed abscission, seed 
release height is a key phenotypic driver explaining in-
dividual variation in dispersal distances of abiotically 
dispersed plants (Thiede and Augspurger 1996; Wender 
et al. 2005). For endozoochorous trees, preferential for-
aging of frugivores at different canopy heights raises 
the possibility that differences in height may influence 
the frugivore assemblage to which fruits are exposed 
(Poulsen et al. 2002; Flörchinger et al. 2010) and conse-
quently impact dispersal outcomes.

Dispersal-specific structures
Intraspecific variation in specialized structures that aid 
in seed dispersal can also cause intraspecific variation in 
dispersal kernels. In wind-dispersed plants, pappus and 
wing morphology can affect seed falling velocity (Riba 
et al. 2005; Tabassum and Bonser 2017). The quantity of 
low-density tissues in water-dispersed fruits and seeds 
can affect buoyancy, which may affect dispersal dis-
tances (Guja et al. 2014). For ant-dispersed species, the 
presence of elaiosomes and the elaiosome/load ratio 
increased removal rates by ants (Hughes and Westoby 
1992). For fleshy-fruited plants, fruits with relatively 
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higher energetic rewards (e.g. pulp to seed ratio or 
elaisome size) result in higher removal probabilities 
(Sallabanks 1993; Willson 1994; Mark and Olesen 1996; 
Stanley and Lill 2002). For fruit dispersed by epizoochory, 
there is variation in the presence, size and number of 
appendages that enable mechanical interlocking with 
animal fur (Gorb and Gorb 2002) or variation in the de-
gree of heterocarpy, in which individual plants produce 
morphologically distinct diaspores (Monty et  al. 2016). 
However, the impact of this variation on dispersal has 
not yet been tested for this dispersal mode. Intraspecific 
studies are also rare among synzoochorous species (e.g. 
Smallwood et al. 2001; Shimada et al. 2010), although 
their results consistently suggest that seeds that offer 
greater rewards and have fewer defences or lower hand-
ling times are dispersed further. These same traits also 
mean that they are consumed at higher rates, with less 
perishable seeds cached more frequently (reviewed by 
Vander Wall 2010; Lichti et al. 2017).

Extrinsic factors
Extrinsic factors related to a plant’s local environment 
and its dispersal vector can cause intraspecific variation 
in dispersal. For example, the interaction between abi-
otic dispersal vectors and the landscape structure can 
cause intraspecific differences in water dispersal due 
to local flow patterns (Van der Stocken et al. 2015) and 
in wind dispersal due to local topography, atmospheric 
conditions and surrounding vegetation (Nathan et  al. 
2001; Augspurger et  al. 2017). Animal-dispersed plant 
species are impacted by individual variation among seed 
dispersers (reviewed in Zwolak 2018) and these may 
interact with intrinsic factors, such as fruit and seed size 
as discussed above. Animal behaviour and the plants 
surrounding a focal plant can also interact with the local 
fruiting neighbourhood impacting dispersal probabilities 
and distances (Blendinger et al. 2008; Carlo and Morales 
2008). Finally, differing impacts of anthropogenic driv-
ers across space also causes within-species variation in 
dispersal; for example, habitat fragmentation can influ-
ence frugivore movement patterns and thus dispersal 
distances (Levey et al. 2005) and defaunation impacts 
the composition of the frugivore assemblage and behav-
iour of remaining frugivores (McConkey and Drake 2006; 
Holbrook and Loiselle 2009).

Consequences for Local Population 
Dynamics
Intraspecific variation in seed dispersal can affect 
demography by influencing vital rates (i.e. germination, 
growth and survival) as well as dynamics within and 

among populations (Howe and Miriti 2004). For example, 
variation in seed dispersal distance can lead to variation 
in plant survival and growth as some seeds may escape 
mortality due to natural enemies (Janzen 1970) or 
experience reduced competition from siblings (Cheplick 
1992). Variation in how seeds are dispersed can also 
lead to variation in survival depending on the time and 
treatment of seeds passing through the gut for endo-
zoochorous species (Traveset et al. 2007), and the qual-
ity of habitat in which seeds are deposited (Beckman 
and Rogers 2013). It is critical to recognize the effect of 
this variation, as these vital rates determine population 
growth. In addition, individual variation in dispersal can 
affect metapopulation processes by impacting the fre-
quency of movement, genotypes and traits of individu-
als that move between populations (Cheptou et al. 2008; 
but see Castorani et al. 2017).

Overlooking intraspecific variation in dispersal can im-
pact conclusions of local population persistence in sev-
eral ways, particularly in changing environments. First, 
individual variation in dispersal may impact projections 
by population matrix and integral projection models. In 
these models of local population dynamics, dispersal is 
rarely considered explicitly (see next section for discus-
sion of population spread), but instead subsumed into 
the various factors affecting the transitions from seed 
to seedling, or seedling to sapling. Because single indi-
viduals can contribute large portions of new recruits in 
plant communities (Wheelwright 1986; Minor and Kobe 
2017), estimated population-level recruitment may 
change substantially as individual composition changes 
(e.g. between population, or within populations if the so-
called super-producers die). In addition, demographic 
models that do not explicitly consider dispersal are un-
able to forecast how altered dispersal processes (i.e. due 
to defaunation, fragmentation or changing climates) 
may influence population dynamics and persistence 
(see section Relevance under Anthropogenic and Global 
Climate Change below). Models that more mechanistic-
ally consider how dispersal and the deposition environ-
ment impact growth and survival can incorporate these 
processes and project population trajectories under al-
tered dispersal (e.g. Caughlin et al. 2014).

A few phenomenological and mechanistic models do 
explicitly address how dispersal influences local popula-
tion dynamics (e.g. Godinez-Alvarez and Jordano 2007; 
Brodie et al. 2009; Loayza and Knight 2010). This is an 
important first step in understanding the importance of 
dispersal. Next, researchers should examine how using 
the mean values related to dispersal (e.g. dispersal dis-
tance, fecundity) biases population projections to identify 
the circumstances when intraspecific variation in dis-
persal needs to be considered for projecting population 
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dynamics. For example, when estimating dispersal dis-
tances based on trait allometries (e.g. Norghauer et al. 
2011), the use of mean trait values can under- or over-
estimate dispersal distances due to Jensen’s inequality. 
In particular in small populations, individual variation 
in dispersal can cause population-level patterns of dis-
persal to differ significantly from expectations based on 
mean values (Lewis and Pacala 2000). Simulations that 
explicitly include intraspecific variation are not equal to 
models that use the mean and variability of the popu-
lation (Box 3), with the largest consequence for popu-
lations occupying habitats located far away from sites 
suitable for establishment. Overall, there is a need for 
demographic studies to include dispersal explicitly and 
to explore how and when intraspecific variation in dis-
persal affects local population dynamics.

Consequences for Spatial Spread of 
Populations
Explaining historical range expansions and predict-
ing future vegetation migration rates is a fundamental 
question in global change biology and invasion ecology 
(Clark et al. 1998; Lockwood et al. 2013). As traditional 
Gaussian dispersal kernels required an unrealistic-
ally large mean dispersal distance to match historical 
spread rates (i.e. ~1000 m, Clark et al. 1998), leptokurtic 
kernels were proposed as an alternative to describe spa-
tial spread (Mollison 1977; Kot et al. 1996). In contrast to 
their Gaussian counterparts, these kernels have higher 
probabilities of short-distance dispersal events, creating 
a more peaked distribution, and higher probabilities of 
rare, long-distance dispersal events, creating a fatter 
or thicker tail (Box 4). These dispersal kernels preserve 
the mean distance travelled by a seed, but lead to faster 
rates of either constant or ever-accelerating spatial 
spread (Box 4).

These population-level leptokurtic kernels could arise 
due to intraspecific variation in seed dispersal (Box 2), 
and have been the focus of numerous studies (Neubert 
and Caswell 2000; Petrovskii and Morozov 2009; Bouin 
et al. 2012; Stover et al. 2014; Horvitz et al. 2015; Schreiber 
and Beckman, 2019). For example, Neubert and Caswell 
(2000) studied spatial spread of the Neotropical Calathea 
ovandensis due to dispersal by four ant species. The one 
ant species, Pachycondyla apicalis, that dispersed seeds 
the furthest (mean dispersal distance > 9 m) only dis-
persed 7  % of the seeds. However, the inclusion or re-
moval of P. apicalis led to a large change in the rate of 
spatial spread. Horvitz et al. (2015) reached a similar con-
clusion with gravity-, catbird-, robin- and raccoon-dis-
persed seeds in Ardisia elliptica. Using frugivore-stratified 
spread models, they showed that it was the infrequent 

but longer-distance dispersal by robins that determined 
rates of spatial spread. As illustrated in Box 2, continuous 
variation in the diffusion coefficient D (i.e. the square 
root of the mean squared displacement) among indi-
viduals can generate leptokurtic dispersal kernels at the 
population level and, thereby, increase rates of spatial 
spread (Petrovskii and Morozov 2009; Stover et al. 2014; 
Schreiber and Beckman, 2019). The magnitude of this in-
crease, however, depends subtly on the nature of the dis-
tribution underlying the individual variation. For example, 
gamma-distributed individual variation in D leads to 
fatter exponentially bounded population-level dispersal 
kernels (Petrovskii and Morozov 2009). Dispersal kernels 
that are exponentially bounded result in asymptotically 
constant spread rates (Box 4). As a first-order approxi-
mation, the increase in rate of spatial spread due to in-
dividual variation in D is proportional to the variance of 
this variance (Stover et al. 2014; Schreiber and Beckman, 
2019). In contrast, individual variation in D could lead to 
a population-level dispersal kernel with a power-law tail. 
As these power-law tails are not exponentially bounded, 
this form of individual variation would lead to ever-accel-
erating rates of spatial spread (Box 4; Kot et al. 1996). An 
example of a process that could lead to a population-
level dispersal kernel with a power-law tail arises from 
individual variation in body size of animal seed dispersers 
that may affect the movement of seeds—seed dispersers 
with higher body mass are expected to change move-
ment direction less frequently than seed dispersers with 
lower body size as it requires a larger force and larger 
energy expense (Petrovskii and Morozov 2009).

Spread rates are determined by both dispersal and 
demography at or near the front of an invasion. To 
understand how individual variation in dispersal af-
fects spread, one must simultaneously assess the role 
of variation in demography (introduced in the previous 
section). Variation in dispersal and demography can have 
a common, external source, which then influences spread 
through both pathways. In a study in which individual 
variation was induced externally by a receptacle-feeding 
weevil that forms cysts inside developing flower head of 
Carduus nutans, Marchetto et al. (2014) showed that cysts 
affect the number of seeds produced, the probability that 
a seed would be dispersed away from the mother plant 
and the terminal velocity of seeds that do disperse. The 
consequences for population growth and spread were 
evaluated with matrix-based travelling wave-speed mod-
els (e.g. Neubert and Caswell 2000): the average load of 
cysts had a greater effect on population spread than local 
population dynamics of C. nutans in New Zealand (−43 % 
vs. −17 %), but the reverse was true for the USA (−46 % vs. 
−64 %). This example further shows that population-level 
impacts depend not just on the amount of variation in 
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Simulation setup: A 640-m-long wrapped transect (i.e. seeds dispersing off one edge, reappear on the opposite edge). 
The initial population was restricted to a contiguous 80 m, centred either at 0 (yellow), 80 (grey) or 160 (dark grey). For 
the ‘Harsh environment’ simulations, half of the transect was made relatively uninhabitable for seedlings (dashed).

Simulation results: In the Uniform environment, the results are the same regardless of the starting location. For 
simplicity, only one is shown (location = 0).

Box 3. Intraspecific variation in dispersal and demography. The median (solid lines) and 95 % quantiles (dashed lines) 
of population size are shown, from n = 50 replicate simulations per scenario. All simulations used identical rules for 
individual growth, fecundity and survival. Seeds were dispersed from individual maternal plants according to Gaussian 
kernels, with a population-level mean dispersal distance of 144 m. For ‘all kernels identical’ scenarios, this mean dispersal 
distance was applied to all individuals. For scenarios with ‘intraspecific variation’, 20 % of the plants dispersing seeds in a 
given year were randomly assigned a mean dispersal distance of 464 m, and the remainder had a mean distance of 64 
m. Thus, while the population-level mean dispersal distance was identical in both cases, the intraspecific variation sce-
nario had more plants dispersing seeds to short distances while a few plants are dispersing seeds much further. Seedling 
establishment probabilities and initial population locations also varied by scenario. All simulations included increasing 
survival with distance from already established plants; however, in the ‘Harsh environment’ scenario, the upper half of 
the transect was made uninhabitable to new seedlings (e.g. as might occur under severe browsing pressure). In all cases, 
initial populations were restricted to a contiguous 80 m segment of the transect; however, this segment was centred 
either at the middle of the transect (location = 0) or closer to the upper half of the transect (location = 80 m, or 160 m). 
For the ‘Harsh environment’ scenarios, this resulted in different levels of seed limitation as the source population was 
increasingly isolated from the lower, more habitable portion of the transect. While the final population size was unaf-
fected (i.e. the asymptote), intraspecific variability in dispersal consistently increased population growth rates at the start 
of the simulations. The greatest difference in population growth rates was found when the source population was the 
most isolated from suitable habitat (location = 160). Data are available as Supporting Information-Appendix S4.
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dispersal-related seed traits, but also on the sensitivity of 
the spread rate to changes in those traits. That sensitivity 
is jointly shaped by all dispersal, reproduction, survival 
and growth rates that co-determine the life cycle. While 
the weevils in the above case study have clear negative 
effects on both dispersal and fecundity, there may be 
situations where covariance of dispersal and demography 
rates can propel population spread. When individual vari-
ation in fecundity is positively correlated with mean dis-
persal distance (e.g. a higher probability of long-distance 
dispersal for seeds of more fecund parents), this can sub-
stantially increase spread rates, as shown in theoretical 
explorations (Schreiber and Beckman, 2019).

The aforementioned theoretical insights about the ef-
fects of individual variation on dispersal are based on 

the assumption that the populations are experiencing 
negative density dependence at the population edge. 
Thus, it is the dispersal traits of the individuals at the 
leading edge that are ‘pulling’ the population forward. 
Alternatively, there can be a strong Allee effect at the 
leading edge, which is a positive density-dependent pro-
cess. When this occurs, it is the individuals dispersing 
from the core to the leading edge that are important 
(i.e. the population is being ‘pushed’ forward). Self-
incompatible plants are most likely to experience Allee 
effects due to mate limitation, thus a potentially im-
portant challenge for future work is understanding how 
individual variation in seed dispersal influences the ini-
tiation of spatial spread and the rate of spatial spread. 
These theoretical insights have also assumed that 

Box 4. Rare long dispersal distance events increase rates of spatial spread. The Gaussian (thin-tailed), Laplacian 
(leptokurtic) and log square root (leptokurtic and fat-tailed) dispersal kernels plotted on the left-hand side rep-
resent the density of seeds dispersed a given distance north or south from its parent. The spatial distribution of 
the corresponding populations over a 10-year period are shown to the right. Leptokurtic dispersal kernels, such as 
the Laplacian and log square root, result in faster spread rates than the Gaussian dispersal kernel. Exponentially 
bounded dispersal kernels, such as the Gaussian and Laplacian, result in asymptotically constant spread rates, 
whereas distributions that are not exponentially bounded (i.e. fat-tailed, Kot et al. 1996), such as the log square 
root, result in ever-accelerating spread rates. All dispersal kernels have a mean dispersal distance of 0.25 and local 
survival and reproduction is given by a Berverton–Holt function 10 * n/(1 + n), where n is the local density.
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environmental conditions are relatively homogenous 
in time and space. While a useful first-order approxi-
mation, environmental variation can substantially alter 
rates of spatial spread (Shigesada and Kawasaki 1997; 
Ellner and Schreiber 2012). For example, spatial vari-
ation in fecundity can reduce spread rates (Shigesada 
et al. 1986), while temporal variation in dispersal rates 
can increase spread rates (Ellner and Schreiber 2012). 
Hence, another important challenge for future work is to 
identify how the joint effects of environmental and seed 
dispersal variation impact rates of spatial spread.

Consequences for Plant Communities
Dispersal is integral to local community dynamics, as 
species arrival depends on successful dispersal and 
establishment from the local and regional species 
pools (Leibold et  al. 2004; Holyoak et  al. 2005). Thus, 
intraspecific variability in dispersal (e.g. variability in 
dispersal distance, quantity or quality of dispersal, or 
species composition of the incoming propagules) has 
the potential to influence community processes such 
as assembly, composition and species coexistence. To 
the best of our knowledge, there have been no experi-
ments that directly examine intraspecific variability in 
dispersal at the community level. However, significant 
variability in dispersal at the population level across 
time or space can indeed alter community dynamics, 
indicating that intraspecific variation in dispersal 
should affect community dynamics. For example, plant 
species richness increases with the richness of spe-
cies’ propagules that arrive (Tilman 1997; Aicher et al. 
2011), as well as with the distance from which these 
species arrive (Germain et al. 2017). Therefore, we can 
hypothesize that intraspecific variability in dispersal 
distance and quantity could alter the species richness 
of a community. Additionally, intraspecific variation in 
the timing of species arrival can alter community as-
sembly, as some species have strong priority effects 
that alter overall diversity if they arrive first (e.g. Fukami 
et al. 2005; Martin and Wilsey 2012).

In theoretical systems, stable coexistence can also 
be impacted by intraspecific variation in dispersal. High 
variation among individuals (Clark 2010), or variation 
in the environmental conditions that in turn create 
individual variability (Berkley et  al. 2010), may pro-
mote coexistence through niche partitioning in many 
dimensions. This individual-level variation can also 
make coexistence more difficult as it can increase the 
dominance of superior competitors, reduce species-
level niche differentiation and increase the effects of 
demographic stochasticity (Hart et al. 2016). Currently, 

we have a limited understanding of the importance of 
intraspecific variation in dispersal for plant communi-
ties. Intraspecific variation could matter for commu-
nity-level processes (e.g. timing of arrival, diversity of 
arrival, priority of arrival, etc.) but little is known em-
pirically or theoretically of the consequences for di-
versity. However, individual-based models and other 
approaches make these kinds of studies possible. 
Increased variation in traits can increase or decrease 
coexistence (Clark 2010; Hart et al. 2016), but studies 
to date have not explicitly incorporated intraspecific 
variation in dispersal. The hypotheses outlined here 
offer a rich area for future studies to test.

Consequences for Evolution
Seed dispersal and pollen dispersal are the primary 
sources of gene flow in plants. As such, seed dispersal 
plays a central role in evolutionary biology, driving pat-
terns ranging from population structure (Hamrick and 
Godt 1996) to inbreeding depression (Roze and Rousset 
2005) and local adaptation (Tigano and Friesen 2016). 
Moreover, the high level of intraspecific variation in seed 
dispersal provides the foundation for the great evolu-
tionary potential of dispersal itself (Ronce 2007). Natural 
selection can act on this variation because two condi-
tions are generally fulfilled. First, seed dispersal has a 
genetic basis with heritability estimates of up to 0.8 
(Saastamoinen et al. 2018), although heritability strongly 
depends on the environment (Donohue et  al. 2005; 
Wender et al. 2005). Second, all elements of dispersal as 
discussed here can strongly influence maternal fitness. 
The number of seeds produced determines the poten-
tial number of offspring, while subsequent offspring sur-
vival and reproductive success depend on where seeds 
land within the seedscape (Rubio de Casas et al. 2012). 
Evolution may reduce or maintain intraspecific variation 
in dispersal. Specific dispersal phenotypes—that ei-
ther promote or limit dispersal—may be lost if they are 
selected against (e.g. Cheptou et  al. 2008) or through 
genetic drift (Barrett and Kohn 1991). However, because 
the evolutionary costs and benefits of dispersal highly 
depend on environmental conditions and the maternal 
phenotype (Ronce 2007), contrasting selection pres-
sures in heterogeneous environments can maintain dis-
persal variation within populations (Mathias et al. 2001; 
Stevens et al. 2010). Evolution may also promote vari-
ation within the seed crop of an individual in tempor-
ally variable environments (Snyder 2011; Rubio de Casas 
et  al. 2012). Heterocarpy, where individuals produce 
fruits with multiple dispersal morphologies, is espe-
cially common in the Asteraceae and Chenopodiaceae 
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(Imbert 2002), and has been shown to have a certain 
degree of phenotypic plasticity (Taghizadeh et al. 2009; 
Rubio de Casas et al. 2012).

In spreading plant populations, heritable individual 
variation in dispersal can lead to spatial sorting, a fit-
ness-independent process where highly dispersive gen-
otypes accumulate and reproduce at the leading edge 
(Shine et al. 2011; Bouin et al. 2012). This results in the 
spread process itself selecting for the very traits that 
promote increased dispersal (Travis and Dytham 2002; 
Perkins et al. 2013) and accelerates the rate of spatial 
spread (Phillips et al. 2010; Bouin et al. 2012). Williams 
et  al. (2016) showed that populations of Arabidopsis 
thaliana invading experimental landscapes evolved 
higher dispersal abilities at the invasion front, and that 
evolution accelerates the spread velocity up to 200 % in 
fragmented landscapes. However, mixed evidence for 
evolutionary change in seed dispersal has been found 
for range expansions under field conditions (e.g. Bartle 
et al. 2013; Huang et al. 2015; Monty et al. 2016), which 
require further study.

Individual variation in dispersal strongly affects ma-
ternal fitness, facilitating rapid evolution of dispersal 
and associated traits with consequences for populations 
and communities as discussed in the previous sections. 
Focusing on the mean dispersal value of a population 
will ignore key standing genetic variation around this 
mean, which will determine the probability of an adap-
tive allele reaching fixation and whether the population 
can rapidly evolve increased or decreased dispersal in 
the future. The resulting eco-evolutionary dynamics are 
a major driver of plant population responses to rapid en-
vironmental change.

Relevance under Anthropogenic and 
Global Climate Change
Ongoing and future climate change will lead to increas-
ing temperatures, changes in precipitation regimes, and 
an increase in the frequency and intensity of extreme 
events (i.e. drought, floods, heat waves, etc.) (IPCC 
2014). This increase in extreme weather events may 
have a direct effect on the frequency of long-distance 
dispersal events, in particular for areas affected by hur-
ricanes and storms (Gillespie et  al. 2012). In response 
to changes in climate, species may shift their distribu-
tions to stay within their bioclimatic niche, adapt to the 
new environmental conditions or become locally extinct 
(Dawson et  al. 2011; Hof et  al. 2011). As species shift 
their ranges, changes in community composition (Lloret 
et  al. 2009) and even potentially novel communities 
(Williams and Jackson 2007) are likely, which can alter 
ecosystem functioning (e.g. Liu et al. 2018; Morin et al. 

2018). Thus, seed dispersal will play a critical role for 
how plants and ecosystems respond to climate change 
and there may be additional consequences of ignoring 
intraspecific variation within this global change context.

As discussed above, ignoring intraspecific variation 
in seed dispersal can underestimate population spread 
rates. This is critical for predicting future range shifts, as 
the ability of plants to track rapid changes in climate re-
mains largely uncertain (e.g. Zhu et al. 2012; Cunze et al. 
2013). By not considering dispersal variation, previous 
estimates may have systematically underestimated 
plant migration rates (see Box 2; individual variation 
creates more leptokurtic dispersal kernels at the popu-
lation level leading to more long-distance dispersal). 
However, it is important to note that even with faster 
migration rates, many plant species will still be un-
able to reach new bioclimatically suitable habitat due 
to landscape fragmentation and life history constraints 
(Miller and McGill 2018). While fragmentation can select 
for increased dispersal ability during population spread 
(Williams et al. 2016), severe fragmentation may select 
for reduced dispersal capabilities in metapopulations 
(Cheptou et  al. 2008), further limiting plants’ abilities 
to persist in fragmented landscapes. Whether dispersal 
is constrained by life history traits within plant species 
is an open question. Bonte and Dahirel (2017) propose 
that dispersal traits evolve independently from other life 
history traits, but studies for plants documenting intra-
specific variation in dispersal in the context of life his-
tory strategies are limited. By incorporating intraspecific 
variability in seed dispersal, it will increase our ability 
to predict the vulnerability of species to decline or even 
local extinction (Valladares et al. 2014; Cochrane et al. 
2015) and will help inform alternative conservation ef-
forts, such as assisted dispersal (Hallfors et  al. 2017). 
Climate change may also have a direct influence on 
seed production and seed traits. For example, increas-
ing temperatures reduced both seed set and seed size 
in kidney beans (Phaseolus vulgaris) (Prasad et al. 2002). 
As discussed above, variability in seed crop size and seed 
size affects the probability of seeds reaching favourable 
habitats which may ultimately alter community com-
position and ecosystem functioning. To be clear, plants 
are expected to face challenges in keeping pace with 
rapid climate change, and even the most optimistic sce-
narios assume their dispersal kernels remain the same. 
However, if climate change also alters seed traits (as it 
appears to), then this induces an additional barrier or 
benefit for successful seed dispersal.

Climate change is not the only threat that species 
have to cope with. Anthropogenic activities, such as 
fragmentation, hunting of animal seed dispersers and 
harvesting of plants, can also be strong selective forces. 
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Anthropogenic activities have already been shown to 
alter plant traits and the amount of variation between 
individuals in plant populations (Hall et  al. 2003; Law 
and Salick 2005; Galetti et al. 2013) as well as disrupting 
the co-evolutionary dynamics of plant–frugivore inter-
actions, leading to novel selection pressures on disper-
sal-related seed traits (Fontúrbel and Medel 2017). For 
example, human harvesting of larger individuals has 
resulted in a systematic reduction in plant height of a 
rare plant species (Saussurea laniceps) (Law and Salick 
2005). In addition, habitat loss and hunting have con-
tributed to the functional loss of large seed dispersers, 
resulting in a reduction in seed size in a tropical palm 
population (Euterpe edulis) (Galetti et al. 2013). This an-
thropogenically induced reduction of intraspecific vari-
ation is often the opposite direction from that which 
would be driven by natural selection (Carlson et  al. 
2007). The loss of individual variation may reduce fe-
cundity and recruitment and have consequences under 
ongoing climate change (Law and Salick 2005; Galetti 
et  al. 2013). Moreover, the reduction of seed size in 
some plant species may cause increased vulnerability 
as smaller seeds are more sensitive to desiccation 
(Galetti et al. 2013; Wyse and Dickie 2017), which will 
be especially relevant during extended and intensi-
fied periods of drought under future climate change. 
Finally, individual variation in dispersal distance may 
affect the ability of populations to adapt to these an-
thropogenic changes, by altering the spatial scale of 
gene flow. Although gene flow can provide a source 
of adaptive genetic variation, it may also homogenize 
populations and prevent local adaptation (reviewed in 
Tigano and Friesen 2016). The ability to adapt to novel 
climate conditions or biotic interactions will be critical 
to the persistence of many populations under rapid en-
vironmental change (Gonzalez et al. 2013).

The eco-evolutionary dynamics of dispersal will play 
a key role for determining species responses to habitat 
fragmentation, biological invasions and range shifts in 
response to climate change (Travis et  al. 2013; Urban 
et  al. 2016). As noted in previous sections, dispersal-
related traits may rapidly evolve during population 
spread through favourable habitat. However, these evo-
lutionary changes may affect how populations subse-
quently respond to stressful environments such as those 
expected during range shifts under climate change. In 
experimental invasions of A.  thaliana, an evolutionary 
increase in seed size over six generations of spread was 
associated with a subsequent reduction in population 
performance under drought stress (Lustenhouwer et al. 
2019). Thus, intraspecific variation in dispersal and seed 
traits and their evolution will influence the ability of plants 
to respond to anthropogenic and global climate change.

Recommendations for Best Practices and 
New Approaches for Studying Individual 
Variation and Its Implications through 
Combining Empirical and Modelling 
Studies
As demonstrated throughout this manuscript, ignoring 
intraspecific variation in dispersal can have important 
consequences for our understanding of population and 
community dynamics, spatial spread and evolution, and 
is especially relevant under future global changes. Below 
we outline some recommendations that are intended to 
advance this field of research.

First, a paradigm shift is necessary regarding the way 
we think about dispersal. The default, a priori assumption 
should be that intraspecific variation in dispersal exists 
and is biologically relevant. With this in mind, reporting 
of mean dispersal distance plus some measure of vari-
ance (i.e. standard deviation, variance, range) should 
become standard practice in order to begin quantifying 
uncertainty due to intraspecific variation. Statistical ap-
proaches, such as hierarchical Bayes models, can allow 
researchers to quantify intraspecific variability arising 
from different sources (Albert et  al. 2011; Nuñez et  al. 
2019). Due to the disproportionate amount of influence 
that rare events can cause, explicitly noting the pres-
ence of outliers is also important. As the information on 
fruit and seed traits accessible from publicly available 
databases continues to grow (TRY Plant Trait Database 
(Kattge et  al. 2011); KEW Seed Information Database 
(http://data.kew.org/sid/); LEDA (http://www.uni-old-
enburg.de/en/biology/landeco/research/projects/leda); 
FRUBASE (https://doi.org/10.5061/dryad.9tb73)), we 
recommend researchers make dispersal distance data 
available along with information on traits, dispersers 
and environmental context (e.g. (e.g. Tamme et al. 2014; 
Sullivan et al. 2018). One of the aims of the CoDisperse 
Network is to create such a centralized dispersal data-
base along with developing standardized protocols to 
ensure the necessary data are available for simultan-
eously parameterizing and developing models, and 
testing model predictions (Beckman et al., 2019).

Second, models that describe the responses of popu-
lations, communities or ecosystems need to explicitly 
account for this variation. This is not a simple task and 
will require the diverse perspectives of mathematical, 
computational and statistical ecologists to develop a 
variety of approaches. We first need to understand how 
the number of seeds dispersed and the resulting spatial 
patterns change as a function of parental phenotype, 
seed phenotype and environmental context (as well as 
how context changes over space and time). One can 
take a bottom-up, mechanistic approach for modelling 
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seed dispersal (e.g. Nathan et al. 2011; Côrtes and Uriarte 
2012), or one can use a top-down, phenomenological ap-
proach by directly fitting dispersal kernels to field data 
(e.g. Lustenhouwer et al. 2017) as applied to interspecific 
variation in dispersal. One suggestion would be to sample 
across the variable space for factors that are known to 
affect dispersal, ensuring sufficient sampling to estimate 
a kernel at each combination of predictor values (Box 5).

Both approaches have their strengths and limita-
tions. The phenomenological approach could be a 
valuable tool to compare the magnitude of variation 
in dispersal within sets of individuals in various en-
vironments. On the other hand, predictions based on 
top-down statistical approaches are liable to fail when 
confronted with novel conditions that fall outside the 
domain of the original data, such as those expected 
from global change. Mechanistic models would be 
better suited for simulating population to ecosystem 
responses under specific future conditions or scenar-
ios that would be difficult to sample. The availability 
of appropriate data present challenges for both types 
of approaches, and can limit our ability to choose 
which variables or processes are important to incorp-
orate during model development (Urban et  al. 2016; 
Lustenhouwer et al. 2017; Beckman et al., 2019). Other 
relevant, interdisciplinary approaches are discussed by 
Rogers et  al. (this issue) in the context of describing 
total dispersal kernels and Johnson et al. (this issue) in 
the context of rapid changes in dispersal.

These updated dispersal kernels then can be utilized 
in a variety of population and community models to 

explore the consequences of intraspecific variation of 
dispersal for plant populations and communities. For 
an overview of how these dispersal kernels can be in-
tegrated with population models, see Beckman et  al. 
(2019) and Jongejans et al. (2008). While the commu-
nity-level consequences of intraspecific variation in dis-
persal may be difficult to study in the field, simulation 
models that integrate empirical studies, evolutionary 
perspectives and theory can provide a predictive under-
standing of plant communities and ecosystems in re-
sponse to variability in dispersal. For example, dynamic 
vegetation models (DVMs) range from individual-based 
models that simulate community dynamics using spe-
cies-specific parameters for establishment, growth, 
competition and mortality to cohort-based models 
that simulate biogeochemical cycles and vegetation 
distributions using plant functional types (Snell et  al. 
2014). Dynamic vegetation models incorporate infor-
mation on plant demography, physiology, and simulate 
interspecific competition for light, water and nutrients 
(e.g. SORTIE (Pacala et al. 1996), FORMIND (Köhler and 
Huth 1998), TreeMig (Lischke and Löffler 2006; Meier 
et  al. 2012)), but require mathematical, computa-
tional and empirical advances to represent the spatial 
and temporal scales relevant for seed dispersal (Snell 
et al. 2014). Although DVMs have not yet been used to 
simulate intraspecific variability in seed dispersal, this 
would be a promising research approach to explore. 
More specifically, significant advancement could be 
made by performing targeted empirical experiments to 
determine how various global change factors will alter 

Box 5. Developing dispersal kernels that include intraspecific variation. Averaging over either space or time essen-
tially destroys all rare or location-dependent events that cause long-distance dispersal or location-specific effects 
(e.g. wind gusts, sharp hill inclines, location-dependent top wind speeds or wind directions, etc.), often resulting in 
severe underestimation of dispersal distances and significant smoothing of the total distribution. Instead, we can 
integrate (average) over phenotype heterogeneity instead of space or time. One possibility is to form a composite 
seed shadow by segmenting space (and if necessary, time) into a raster grid, mapping any conditions that change 
over space or time (e.g. variable wind fields, parent height), calculating dispersal from each pixel to the other pixels 
conditional on local conditions and then summing arrivals for each pixel. In doing so, care must be taken to inte-
grate over both the source and destination pixels, as well as any traits or conditions that do not vary over space and 
time. One must also be aware that the creation of these pixels from the underlying discrete data set is a process of 
averaging itself. If the pixel grid is overly coarse, this averaging will have all of the same consequences mentioned 
above. Provided that the fates of individual seeds are conditionally independent (i.e. the movement of one seed 
provides no information on the movement of other seeds after accounting for the effects of environmental vari-
ables) and identical (any two seeds with the same traits that are subject to the same conditions can be exchanged 
with each other), boa population-level dispersal kernel can be derived by summing the dispersal kernels associated 
with each combination of traits and environmental conditions, weighted by their probability of occurrence in the 
population as a whole. There is one important caveat to this approach: some of the phenotypic traits that influence 
dispersal also influence germination, seedling survival and growth (e.g. seed size; Skarpaas et al. 2011). If the goal is 
to model population or community processes or trait evolution, we cannot average over traits because we will then 
lose track of them and their downstream effects.
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distributions of dispersal traits, and then incorporate 
these validated distributions into the above-mentioned 
individual-based models.

Although we have presented these recommenda-
tions separately, we envision an iterative cycle of 
model building and data collection. Quantitative and 
empirical ecologists would collaborate to identify the 
important drivers of individual variation in different dis-
persal syndromes, characterize their distributions and 
validate model predictions. Ideally, in the long-term as 
capabilities increase, studies should characterize not 
only the marginal variation in drivers, but how those 
variables change with regard to underlying environ-
mental drivers, genetics, ontology and phenology, and 
should also characterize covariation in relevant seed or 
parental traits. There are many exciting research direc-
tions that can be pursued with the use of field (e.g. 
observational, experimental) studies, modelling stud-
ies (e.g. statistical, computational, mathematical) and 
their interface.

Conclusions
We demonstrate that individual variation in seed disper-
sal is important to consider for responses of populations 
and communities, especially under global change scenar-
ios. Future studies on intraspecific variation in dispersal 
are recommended to further elucidate how the dynamics 
of populations, communities and evolution are affected. 
More specifically, we suggest (i) measuring and report-
ing variability in seed dispersal to quantify variance, (ii) 
incorporating variability in dispersal into models to simu-
late its effect and (iii) using the results of the models to 
design experiments to test the predictions about the role 
of intraspecific variability in seed dispersal.
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