211 research outputs found

    Mitochondrial genomes of Clymenella torquata (Maldanidae) and Riftia pachyptila (Siboglinidae) : evidence for conserved gene order in Annelida

    Get PDF
    Author Posting. © The Authors, 2004. This is the author's version of the work. It is posted here by permission of Society for Molecular Biology and Evolution for personal use, not for redistribution. The definitive version was published in Molecular Biology and Evolution 22 (2005): 210-222, doi:10.1093/molbev/msi008.Mitochondrial genomes are useful tools for inferring evolutionary history. However, many taxa are poorly represented by available data. Thus, to further understand the phylogenetic potential of complete mitochondrial genome sequence data in Annelida (segmented worms), we examined the complete mitochondrial sequence for Clymenella torquata (Maldanidae) and an estimated 80% of the sequence of Riftia pachyptila (Siboglinidae). These genomes have remarkably similar gene orders to previously published annelid genomes, suggesting that gene order is conserved across annelids. This result is interesting given the high variation seen in the closely related Mollusca and Brachiopoda. Phylogenetic analyses of DNA sequence, amino acid sequence and gene order all support the recent hypothesis that Sipuncula and Annelida are closely related. Our findings suggest that gene order data is of limited utility in annelids but that sequence data holds promise. Additionally, these genomes show AT bias (~66%) and codon usage biases, but have a typical gene complement for bilaterian mitochondrial genomes.Support by CICOR to RJM is gratefully acknowledged. This work was support by the National Science Foundation grants (DEB-0075618 and EAR-0120646) to KMH

    Phylogenomics of Aplacophora (Mollusca, Aculifera) and a solenogaster without a foot

    Get PDF
    Recent molecular phylogenetic investigations strongly supported the placement of the shell-less, worm-shaped aplacophoran molluscs (Solenogastres and Caudofoveata) and chitons (Polyplacophora) in a clade called Aculifera, which is the sister taxon of all other molluscs. Thus, understanding the evolutionary history of aculiferan molluscs is important for understanding early molluscan evolution. In particular, fundamental questions about evolutionary relationships within Aplacophora have long been unanswered. Here, we supplemented the paucity of available data with transcriptomes from 25 aculiferans and conducted phylogenomic analyses on datasets with up to 525 genes and 75 914 amino acid positions. Our results indicate that aplacophoran taxonomy requires revision as several traditionally recognized groups are non-monophyletic. Most notably, Cavibelonia, the solenogaster taxon defined by hollow sclerites, is polyphyletic, suggesting parallel evolution of hollow sclerites in multiple lineages. Moreover, we describe Apodomenia enigmatica sp. nov., a bizarre new species that appears to be a morphological intermediate between Solenogastres and Caudofoveata. This animal is not a missing link, however; molecular and morphological studies show that it is a derived solenogaster that lacks a foot, mantle cavity and radula. Taken together, these results shed light on the evolutionary history of Aplacophora and reveal a surprising degree of morphological plasticity within the group.publishedVersio

    New data from Monoplacophora and a carefully-curated dataset resolve molluscan relationships

    Get PDF
    Relationships among the major lineages of Mollusca have long been debated. Morphological studies have considered the rarely collected Monoplacophora (Tryblidia) to have several plesiomorphic molluscan traits. The phylogenetic position of this group is contentious as morphologists have generally placed this clade as the sister taxon of the rest of Conchifera whereas earlier molecular studies supported a clade of Monoplacophora +Polyplacophora (Serialia) and phylogenomic studies have generally recovered a clade of Monoplacophora +Cephalopoda. Phylogenomic studies have also strongly supported a clade including Gastropoda, Bivalvia, and Scaphopoda, but relationships among these taxa have been inconsistent. In order to resolve conchiferan relationships and improve understanding of early molluscan evolution, we carefully curated a high-quality data matrix and conducted phylogenomic analyses with broad taxon sampling including newly sequenced genomic data from the monoplacophoran Laevipilina antarctica. Whereas a partitioned maximum likelihood (ML) analysis using site-homogeneous models recovered Monoplacophora sister to Cephalopoda with moderate support, both ML and Bayesian inference (BI) analyses using mixture models recovered Monoplacophora sister to all other conchiferans with strong support. A supertree approach also recovered Monoplacophora as the sister taxon of a clade composed of the rest of Conchifera. Gastropoda was recovered as the sister taxon of Scaphopoda in most analyses, which was strongly supported when mixture models were used. A molecular clock based on our BI topology dates diversification of Mollusca to similar to 546 MYA (+/- 6 MYA) and Conchifera to similar to 540 MYA (+/- 9 MYA), generally consistent with previous work employing nuclear housekeeping genes. These results provide important resolution of conchiferan mollusc phylogeny and offer new insights into ancestral character states of major mollusc clades

    TIAMMAt: leveraging biodiversity to revise protein domain models, evidence from innate immunity

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Tassia, M. G., David, K. T., Townsend, J. P., & Halanych, K. M. TIAMMAt: leveraging biodiversity to revise protein domain models, evidence from innate immunity. Molecular Biology and Evolution, 38(12), (2021): 5806–5818, https://doi.org/10.1093/molbev/msab258.Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.This work was supported by The National Science Foundation (Grant No. IOS—1755377 to K.M.H., Rita Graze, and Elizabeth Hiltbold Schwartz), and K.T.D. was supported by The National Science Foundation’s Graduate Research Fellowship Program

    Intervento alla tavola rotonda "Dove sta andando la critica letteraria?"

    Get PDF
    Marginalità rispetto alle altre letterature e alle altre forme di comunicazione. È questa, secondo lo studioso, la condizione attuale della letteratura italiana nel sistema globalizzato. È necessario che l'interprete riscopra la sua triplice funzione - critico, filologo, storico della letteratura - per tentare di penetrare nel testo, anche grazie agli apporti fecondi della critica tematica e ai nuovi approcci interdisciplinari della comparatistica

    On the phylogenetic position of Myzostomida: can 77 genes get it wrong?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phylogenomic analyses recently became popular to address questions about deep metazoan phylogeny. Ribosomal proteins (RP) dominate many of these analyses or are, in some cases, the only genes included. Despite initial hopes, phylogenomic analyses including tens to hundreds of genes still fail to robustly place many bilaterian taxa.</p> <p>Results</p> <p>Using the phylogenetic position of myzostomids as an example, we show that phylogenies derived from RP genes and mitochondrial genes produce incongruent results. Whereas the former support a position within a clade of platyzoan taxa, mitochondrial data recovers an annelid affinity, which is strongly supported by the gene order data and is congruent with morphology. Using hypothesis testing, our RP data significantly rejects the annelids affinity, whereas a platyzoan relationship is significantly rejected by the mitochondrial data.</p> <p>Conclusion</p> <p>We conclude (i) that reliance of a set of markers belonging to a single class of macromolecular complexes might bias the analysis, and (ii) that concatenation of all available data might introduce conflicting signal into phylogenetic analyses. We therefore strongly recommend testing for data incongruence in phylogenomic analyses. Furthermore, judging all available data, we consider the annelid affinity hypothesis more plausible than a possible platyzoan affinity for myzostomids, and suspect long branch attraction is influencing the RP data. However, this hypothesis needs further confirmation by future analyses.</p

    Summary of findings and research recommendations from the Gulf of Mexico Research Initiative

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wilson, C. A., Feldman, M. G., Carron, M. J., Dannreuther, N. M., Farrington, J. W., Halanych, K. M., Petitt, J. L., Rullkotter, J., Sandifer, P. A., Shaw, J. K., Shepherd, J. G., Westerholm, D. G., Yanoff, C. J., & Zimmermann, L. A. Summary of findings and research recommendations from the Gulf of Mexico Research Initiative. Oceanography, 34(1), (2021): 228–239, https://doi.org/10.5670/oceanog.2021.128.Following the Deepwater Horizon explosion and oil spill in 2010, the Gulf of Mexico Research Initiative (GoMRI) was established to improve society’s ability to understand, respond to, and mitigate the impacts of petroleum pollution and related stressors of the marine and coastal ecosystems. This article provides a high-level overview of the major outcomes of the scientific work undertaken by GoMRI. This i scientifically independent initiative, consisting of over 4,500 experts in academia, government, and industry, contributed to significant knowledge advances across the physical, chemical, geological, and biological oceanographic research fields, as well as in related technology, socioeconomics, human health, and oil spill response measures. For each of these fields, this paper outlines key advances and discoveries made by GoMRI-funded scientists (along with a few surprises), synthesizing their efforts in order to highlight lessons learned, future research needs, remaining gaps, and suggestions for the next generation of scientists

    Dramatic Shifts in Benthic Microbial Eukaryote Communities following the Deepwater Horizon Oil Spill

    Get PDF
    Benthic habitats harbour a significant (yet unexplored) diversity of microscopic eukaryote taxa, including metazoan phyla, protists, algae and fungi. These groups are thought to underpin ecosystem functioning across diverse marine environments. Coastal marine habitats in the Gulf of Mexico experienced visible, heavy impacts following the Deepwater Horizon oil spill in 2010, yet our scant knowledge of prior eukaryotic biodiversity has precluded a thorough assessment of this disturbance. Using a marker gene and morphological approach, we present an intensive evaluation of microbial eukaryote communities prior to and following oiling around heavily impacted shorelines. Our results show significant changes in community structure, with pre-spill assemblages of diverse Metazoa giving way to dominant fungal communities in post-spill sediments. Post-spill fungal taxa exhibit low richness and are characterized by an abundance of known hydrocarbon-degrading genera, compared to prior communities that contained smaller and more diverse fungal assemblages. Comparative taxonomic data from nematodes further suggests drastic impacts; while pre-spill samples exhibit high richness and evenness of genera, post-spill communities contain mainly predatory and scavenger taxa alongside an abundance of juveniles. Based on this community analysis, our data suggest considerable (hidden) initial impacts across Gulf beaches may be ongoing, despite the disappearance of visible surface oil in the region

    Annelid phylogeny and the status of Sipuncula and Echiura

    Get PDF
    BACKGROUND: Annelida comprises an ancient and ecologically important animal phylum with over 16,500 described species and members are the dominant macrofauna of the deep sea. Traditionally, two major groups are distinguished: Clitellata (including earthworms, leeches) and "Polychaeta" (mostly marine worms). Recent analyses of molecular data suggest that Annelida may include other taxa once considered separate phyla (i.e., Echiura, and Sipuncula) and that Clitellata are derived annelids, thus rendering "Polychaeta" paraphyletic; however, this contradicts classification schemes of annelids developed from recent analyses of morphological characters. Given that deep-level evolutionary relationships of Annelida are poorly understood, we have analyzed comprehensive datasets based on nuclear and mitochondrial genes, and have applied rigorous testing of alternative hypotheses so that we can move towards the robust reconstruction of annelid history needed to interpret animal body plan evolution. RESULTS: Sipuncula, Echiura, Siboglinidae, and Clitellata are all nested within polychaete annelids according to phylogenetic analyses of three nuclear genes (18S rRNA, 28S rRNA, EF1α; 4552 nucleotide positions analyzed) for 81 taxa, and 11 nuclear and mitochondrial genes for 10 taxa (additional: 12S rRNA, 16S rRNA, ATP8, COX1-3, CYTB, NAD6; 11,454 nucleotide positions analyzed). For the first time, these findings are substantiated using approximately unbiased tests and non-scaled bootstrap probability tests that compare alternative hypotheses. For echiurans, the polychaete group Capitellidae is corroborated as the sister taxon; while the exact placement of Sipuncula within Annelida is still uncertain, our analyses suggest an affiliation with terebellimorphs. Siboglinids are in a clade with other sabellimorphs, and clitellates fall within a polychaete clade with aeolosomatids as their possible sister group. None of our analyses support the major polychaete clades reflected in the current classification scheme of annelids, and hypothesis testing significantly rejects monophyly of Scolecida, Palpata, Canalipalpata, and Aciculata. CONCLUSION: Using multiple genes and explicit hypothesis testing, we show that Echiura, Siboglinidae, and Clitellata are derived annelids with polychaete sister taxa, and that Sipuncula should be included within annelids. The traditional composition of Annelida greatly underestimates the morphological diversity of this group, and inclusion of Sipuncula and Echiura implies that patterns of segmentation within annelids have been evolutionarily labile. Relationships within Annelida based on our analyses of multiple genes challenge the current classification scheme, and some alternative hypotheses are provided
    corecore