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Abstract 

 Mitochondrial genomes are useful tools for inferring evolutionary history. 

However, many taxa are poorly represented by available data. Thus, to further understand 

the phylogenetic potential of complete mitochondrial genome sequence data in Annelida 

(segmented worms), we examined the complete mitochondrial sequence for Clymenella 

torquata (Maldanidae) and an estimated 80% of the sequence of Riftia pachyptila 

(Siboglinidae).  These genomes have remarkably similar gene orders to previously 

published annelid genomes, suggesting that gene order is conserved across annelids.  This 

result is interesting given the high variation seen in the closely related Mollusca and 

Brachiopoda. Phylogenetic analyses of DNA sequence, amino acid sequence and gene 

order all support the recent hypothesis that Sipuncula and Annelida are closely related. 

Our findings suggest that gene order data is of limited utility in annelids but that 

sequence data holds promise.  Additionally, these genomes show AT bias (~66%) and 

codon usage biases, but have a typical gene complement for bilaterian mitochondrial 

genomes.
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INTRODUCTION 

Sequencing of complete mitochondrial genomes has become a useful tool for 

inferring animal phylogeny (e.g. Boore and Brown 1998; Lavrov, Brown, and Boore 

2004; Helfenbein and Boore 2004). The haploid, non-recombining properties of animal 

mitochondrial DNA (mtDNA), coupled with its small size, make it a logical choice when 

considering phylogenetic events. Determination of the entire mitochondrial genome 

sequence provides several suites of characters for phylogenetic analysis; for example, 

DNA gene sequences (rRNA, tRNA, and protein-encoding), inferred amino acid 

sequences of protein-encoding genes, and the arrangement of genes in the genome. 

However, there is considerable disparity in taxonomic sampling. Chordata accounts for 

75% of the published animal mitochondrial genomes and Arthropoda represents the next 

12.5%. Thus, there is still much to learn about how mitochondria evolve in many animal 

lineages. 

Despite the importance of Annelida (segmented worms) with over 12,000 

described species and its dominance as the most abundant macrofaunal group in the deep 

sea (69% of the planet), only two complete annelid mitochondria have been sequenced 

(the nereid Platynereis dumerilii and the oligochaete Lumbricus terrestris). These 

genomes differ only slightly in gene order.  In addition, partial genomes of the siboglinid 

Galathealinum brachiosum and the leech Helobdella robusta (Boore and Brown 2000), 

match the L. terrestris gene order exactly.  [Note that Siboglinidae was previously 

referred to as Pogonophora and Vestimentifera (McHugh 1997; Rouse and Fauchald 

1997; Halanych et al. 2001).]  Some mtDNA genome data is available for allied 

Lophotrochozoan taxa; most relevant are mollusks (e.g., Hoffman, Boore, and Brown 
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1992; Boore and Brown 1994; Hatzoglou, Rodakis, and Lecanidou 1995; Terrett, Miles, 

and Thomas 1996; Wilding, Mill, and Grahame 1999; Kurabayashi and Ueshima 2000; 

Grande et al. 2002; Tomita et al. 2002; Serb and Lydeard 2003; Boore, Medina, and 

Rosenberg 2004; Dreyer and Steiner 2004; DeJong, Emery, and Adema 2004), 

brachiopods (Stechmann and Schlegel 1999; Noguchi et al. 2000; Helfenbein, Brown and 

Boore 2001), phoronids (Helfenbein and Boore 2004) and sipunculans (Boore and Staton 

2002).  Of these taxa, the sipunculan Phascolopsis gouldii is the most similar to the 

known annelid arrangements with 16 of the 19 sipunculan genes examined in the same 

order as in L. terrestris (but in two separate blocks). For this reason, Boore and Staton 

(2002) hypothesized a close relationship between annelids and sipunculans. Mollusks are 

notable because their mitochondrial genomes appear to have experienced numerous 

large-scale rearrangements and some taxa have even lost the atp8 gene.  Brachiopods also 

seem to have undergone numerous rearrangements.  Of the three complete genomes 

currently available, Laqueus rubellus and Terebratalia transversa share 14 gene 

boundaries composed in 9 blocks; L. rubellus and Terebratulina retusa share only 8 gene 

boundaries in 8 separate blocks (Helfenbein, Brown, and Boore 2001). 

Recent views of annelid phylogeny have moved away from the traditional view of 

two main groups, Clitellata (Oligochaetes and Hirudineans) and Polychaeta.  Although 

morphological cladistic analyses have supported this hypothesis (Rouse and Fauchald 

1995), multiple sources of data clearly show that the Clitellata, Echiuridae, and 

Siboglinidae are within the polychaete radiation (reviewed in McHugh 2000; Halanych, 

Dahlgren, and McHugh 2002; Halanych 2004). Such potential for morphological 

adaptation is not surprising given the enormous amount of diversity in annelids’ body 
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plans, habitats, and life histories. A comprehensive molecular phylogeny of Annelida is 

wanting, and currently our best understanding of annelid evolutionary history comes from 

morphological cladistic analyses (Rouse and Fauchald 1997; Rouse and Pleijel 2001), 

which suggest Annelids contain three major groups, Scolecida, Aciculata, and 

Canalipalpata. Unfortunately, the Clitellata are not considered in these treatments. 

We report here the complete mitochondrial sequence of a bamboo worm 

Clymenella torquata (Maldanidae) and an estimated 80% of the genome of the deep-sea 

tubeworm Riftia pachyptila (Siboglinidae). Clymenella torquata and the other members 

of Maldanidae are called bamboo worms because the shape of their segments gives them 

a bamboo-like appearance.  Clymenella torquata is common in sandy intertidal/subtidal 

estuaries of the Atlantic U.S. coast, where it builds tubes from the surrounding sand and 

ingests sediment and the associated interstitial organisms (Mangum 1964).  Riftia 

pachyptila inhabits the hydrothermal vents of the East Pacific Rise, and obtains energy 

from the chemosynthetic endosymbiotic bacteria in a specialized structure called the 

trophosome (Southward and Southward 1988).  Although annelid phylogeny has not been 

well resolved, available molecular evidence (Halanych, unpublished) places these two 

annelids in very distant parts of the annelid tree.  By including these two taxa, we provide 

representatives for all major clades outlined by Rouse and Fauchald (1997).  Our goals in 

presenting and analyzing these new genomes are 1) to further characterize the evolution 

of mitochondrial genome structure among annelids and 2) to explore the potential of 

mitochondrial genomes in resolving annelid phylogeny. 
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METHODS 

Organisms 

Clymenella torquata and Riftia pachyptila were chosen to obtain better representation of 

annelid diversity than is currently available for mitochondrial genomes. C. torquata is in 

Maldanidae within Scolecida and R. pachyptila is in Siboglinidae within Canalipalpata.  

When combined with the available annelid genomes from GenBank (see Table 1), all of 

the major clades of Annelida are represented (see McHugh 2000; Rouse and Fauchald 

1997; Rouse and Pleijel 2001). All of the genome of C. torquata and two-thirds of the R. 

pachyptila genome presented here were sequenced from total DNA extractions of a single 

individual of each species; the remaining R. pachyptila sequence reported herein came 

from a second individual. C. torquata was collected in 2002 from Hyannisport, MA (N 

41°37’57.9” W 70°19’18.3”).  The two R. pachyptila were collected in 2000 at 2500m 

depth near the Tica vent at 9°N on the East Pacific Rise (N 9°50’26.8”, W 104°17’29.6”). 

All organisms were frozen at -80°C after collection. 

 

DNA Extraction and mtDNA sequencing 

Total genomic DNA was extracted from approximately 25mm3 tissue using the 

DNEasy kit (Promega) according to manufacturer’s protocols.  Throughout this paper, 

gene nomenclature and abbreviations follow Boore and Brown (2000): cox1-3 refer to 

cytochrome oxidase c subunits 1-3, nad1-6 (incl. 4L) refer to NADH dehydrogenase 

subunits 1-6, atp6 and atp8 refer to ATPase F0 subunits 6 and 8, and cob refers to the 

cytochrome oxidase b apoenzyme. tRNA genes are designated trnX, where X is the 

single-letter amino acid code.  Contrary to Boore and Brown (2000), the large and small 
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ribosomal subunits are here referred to as mLSU (mitochondrial large subunit) and mSSU 

(mitochondrial small subunit) respectively. 

 

Clymenella torquata 

All mtDNA amplifications of C. torquata employed 1µL EXL Polymerase 

(Stratagene), as well as 5µL EXL buffer, 25pmol dNTPs, 200ng each primer, 1µL 

stabilizing solution and approximately 10ng genomic DNA per 50µL reaction. The 

sections mLSU–cox1 (using primers 16Sar-L/HCO2198), cox1–cox3 (LCO1498/COIIIr), 

cox3–cob (COIIIf/CytbR), and cob–mLSU (CytbF/16Sbr-H) all generated single-banded 

products. The mLSU primers are from Palumbi (1996); cob and cox3 primers are from 

Boore and Brown (2000), and the COI primers are from Folmer et al. (1994).  PCR 

protocols for these fragments are found in the supplementary material.  Products were 

verified on an agarose gel, purified using the QiaQuick kit (Qiagen), eluted in 40µL 

water, and sheared separately in a HydroShear DNA shearer (GeneMachines) to generate 

random fragments of 1-2kb in length.  The sticky ends were polished with the Klenow 

fragment, and were A-tailed using Taq polymerase, an excess of dATP, and incubation at 

72°C for 10 min. DNA was then repurified with the QiaQuick kit, and cloned into 

pGEM-T Easy (Promega).  Sequencing reactions were performed using Big Dye 

(versions 2 and 3) chemistry on an ABI 377 (Applied Biosystems).  Fifteen mLSU–cox1 

clones (average coverage 5.3X), 9 cox3-cob clones (average 2.9X) and 7 cob–mLSU 

clones (average 2X) were sequenced in both directions using T7 and SP6 and then 

assembled to generate contigs. Combined, the assemblies contained ~90% of the 

sequence of C. torquata’s mt-genome.  Three clones could not be entirely sequenced 
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using plasmid primers.  To complete sequencing on these clones, 19 walking-primers 

were designed (see supplementary information).  No clones were recovered containing 

the largest non-coding region (i.e. the control region or UNK) or the approximately 3kb 

surrounding it (roughly including regions of the atp6 and nad4L genes, and all of nad5, 

trnW, -H, -F, -E, -P, and -T).  This region was sequenced by amplification with flanking 

primers (Ctatp6f2 and Ctnad4r2) and direct sequencing using the walking primers. 

 

Riftia pachyptila 

mtDNA amplification for R. pachyptila was adapted from the procedure of Boore 

and Brown (2000).  Standard primers were used to amplify short sections of cox1 

(LCO1490 and HCO2198; Folmer et al. 1994), and cob (CytbF and CytbR; Boore and 

Brown 2000) with Taq polymerase (Promega) in standard 25µL PCRs.  Products were 

purified using the QiaQuick Gel Extraction Kit (Qiagen) and sequenced on an ABI 377 

automated sequencer.  These sequences were used to design Riftia-specific primers for 

long PCR.  In cox1, the primers Rp1536 and Rp2161 were designed, and in cob, CytBRp. 

Information for all primers can be found in supplementary information. 

These primers were then used to amplify long segments of the mt-genome in 

conjunction with the primers mentioned above: 16Sar-L and Rp1536 amplified the region 

spanning mLSU–cox1, Rp2161 and COIIIr amplified cox1–cox3, and COIIIf and CytBRp 

amplified cox3–cob.  These long PCR reactions consisted of 5uL 10X rTth buffer, 

approximately 10ng template DNA, 25pmol dNTPs, 30pmol each primer, 0.4µL (1U) 

rTth polymerase, and 1µL of Vent polymerase diluted 1:100 (0.02U) per 50µL.  Both 

polymerases are from Applied Biosystems.  PCR products were verified, and when 
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necessary size selected, using 1% agarose gels. Single-banded products were purified and 

single A-overhangs added as above.  A-tailed fragments were cloned into the pGEM-T 

Easy vector (Promega).  Initial clone sequencing used the plasmid primers T7 and SP6; 

complete bidirectional sequencing was accomplished by primer walking, resulting in an 

average sequencing coverage of 7.8X. 

Amplification of the cob–mLSU region in Riftia, which presumably contains 

UNK, was difficult.  Part of this remaining region was sequenced by designing 

degenerate primers to nad4 sequences obtained from the complete genomes of Lumbricus 

terrestris, Platynereis dumerilii, and Katharina tunicata.  These primers (nad4f, TGR 

GGN TAT CAR CCN GAR CG and nad4r, GCY TCN ACR TGN GCY TTN GG) 

amplified a short region of nad4, and allowed the design of primers specific to R. 

pachyptila  (Rpnad4bf and Rpnad4br).  Using EXL polymerase (Stratagene), the primer 

combination Rpnad4bf/16Sbr-H (Palumbi 1996) amplified the region spanning nad4–

mLSU, but the region between cob and nad4, which again was presumed to contain UNK, 

was still difficult to amplify and could not be cloned successfully after amplification.  

Three clones containing spliced PCR amplicons for this fragment (see Results) were 

partially sequenced and provided the remainder of cob as well as complete trnW and atp6 

genes.  For simplicity, the R. pachyptila fragment will henceforth be referred to as the R. 

pachyptila genome. 
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Genomic Assembly 

Assembled sequences were checked by BLAST (Altschul et al. 1990) searches 

against GenBank.  Those sequences that returned strong BLAST hits to mitochondrial 

protein-encoding genes were translated into amino acids using the Drosophila 

mitochondrial code and aligned in CLUSTAL X (Thompson et al. 1997) with other 

available lophotrochozoan genome sequences (Table 1) obtained from GenBank to 

ensure correct identification. The full genomes were assembled by resolving ambiguous 

sequence reads in AutoAssembler (Applied Biosystems), checking against the amino acid 

alignments, and concatenating the individual alignments to make the complete genome 

alignment in MacClade 4.03 (Maddison and Maddison 2000). 

Candidate tRNA genes were found using the tRNAScan-SE web server 

(http://www.genetics.wustl.edu/eddy/tRNAscan-SE); this identified all but four tRNAs in 

C. torquata and one in R. pachyptila.  Stretches of mtDNA that did not code for protein 

genes and were in a similar position to tRNAs in previously published annelid genomes 

were scanned by eye for potential tRNA secondary structure and the presence of the 

anticipated anticodon sequence. The tRNA structures reported here are proposed based 

on the tRNAScan-SE foldings, keeping in mind the general forms suggested by 

Dirheimer et al. (1995).  rRNA genes were identified by sequence homology with 

BLAST entries, and 5’ and 3’ ends were assumed to be directly adjacent to up- and 

downstream genes.  The boundaries of the C. torquata UNK were similarly inferred from 

the ends of the upstream and downstream tRNAs. 
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Phylogenetic Analysis 

Table 1 lists the taxa and their GenBank accession numbers used for phylogenetic 

inference. Outgroups were chosen based on knowledge of Lophotrochozoan evolutionary 

history (Halanych 2004).  Because we hoped to develop a better understanding of the 

utility of mtDNA in constructing annelid phylogeny, we chose to sub-sample available 

lophotrochozoan mtDNA genomes for use as outgroups. For mollusks, we chose the 

polyplacophoran Katharina tunicata for its basal position, the two pulmonate gastropods 

Albinaria caerulea and Cepaea nemoralis because they were more easily aligned than 

other gastropods, and the cephalopod Loligo bleekeri to achieve a broader representation 

of mollusks.  Several other molluscan genomes contained large insertions and deletions 

in several genes relative to annelids, greatly complicating attempts at alignment. All three 

available brachiopods (Terebratalia transversa, Terebratulina retusa, and Laqueus 

rubellus) were included in the analyses.  To create the final alignment, DNA from 

protein-encoding genes was aligned in MacClade 4.03 using CLUSTALX alignments of 

the corresponding amino acids; rRNA genes were aligned manually using secondary 

structure as a guide, employing phylogenetic conservation diagrams obtained from the 

RNA database at the University of Texas’s Institute for Cellular and Molecular Biology 

(http://www.rna.icmb.utexas.edu/topmenu.html).  tRNAs, UNK, and non-coding DNA 

were not included in the alignments due to high variability (see below).  This produced a 

single multi-partitioned alignment in MacClade 4.03, which is available at TreeBase 

(http://www.treebase.org) and in the supplementary information. 

 Two sequence-based datasets and one gene-order dataset were created. One 

sequence-based dataset contained nucleotide sequences from protein-encoding and rRNA 
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genes, and the second contained only inferred amino acid sequences.  Regions that could 

not be unambiguously aligned, and all third codon positions were removed.  The amino 

acids of three protein-coding genes (atp6, atp8, nad6) exhibited high variation, which 

made alignment difficult, and thus were excluded from both datasets.   

All non-annelid taxa herein were treated as outgroups; however, brachiopods are 

drawn basally for illustrative purposes. Although mollusks, annelids, brachiopods, and 

sipunculids are closely related, the relationships between them are not well resolved 

(Halanych 2004). PAUP*4.0b10 (Swofford 2002) was used for parsimony and maximum 

likelihood (ML) analyses. For both datasets, gaps were treated as missing data. For the 

DNA dataset, maximum likelihood models and their parameters were determined with 

hierarchical likelihood ratio tests (hLRT’s) using the program MODELTEST 3.5 (Posada 

and Crandall 1998).  Heuristic searches in PAUP under both parsimony and ML 

employed random sequence addition (parsimony—100 replicates; likelihood—10 

replicates) to obtain starting trees, and TBR swapping. Bootstrapping with character re-

sampling was performed with 1000 replicates for parsimony and 500 replicates for ML.  

Decay indices (also called Bremer support, Bremer 1994) were also calculated for the 

parsimony trees using constraints in PAUP. 

The order of genes in the mitochondria was used as a third dataset for 

phylogenetic analysis.  Although breakpoint analysis (Blanchette, Kunisawa, and Sankoff 

1999) has proven useful in many cases, we prefer a newer parsimony framework 

(described in Boore and Staton 2002), which does not condense the data into pairwise 

distance measures, and allows partial genomes to be included.  Briefly, 74 multistate 

characters were created (“upstream of gene X” and “downstream of gene X” for each of 
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the 37 genes), and character states were coded as “beginning of gene Y” and “end of gene 

Y”, for a total of 74 states (though obviously a gene cannot appear up- or downstream of 

itself).  The matrix was then analyzed in PAUP under parsimony as previously outlined.  

Because the gene orders of four taxa (P. gouldii, G. brachiosum, H. robusta, R. 

pachyptila) are incompletely known, missing and ambiguous characters (52) were 

removed before searching for trees, leaving 22 characters.  The brachiopods were again 

placed as the basal-most outgroup.   For comparative purposes, breakpoint and inversion 

distances were calculated using GRAPPA 1.6 (Bader, Moret and Yan 2001). 
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RESULTS 

Genomic Composition 

The complete mitochondrial DNA (mtDNA) of C. torquata is 15,538 bp in 

length, and the R. pachyptila fragment is 12,016 bp long. Figure 1 shows the gene order 

for both genomes. The C. torquata genome is similar in size (i.e., about 15kb) to other 

lophotrochozoan mitochondrial genomes, and the portion of the R. pachyptila genome is 

of similar size to the same portions from C. torquata and L. terrestris. Table 2 shows a 

breakdown of nucleotide composition.  Both genomes show patterns of nucleotide bias 

and skew1.  The two genomes are AT-rich (~66%), and this bias is consistent across the 

three main gene types (those coding for proteins, tRNAs, and rRNAs).  T is the most 

common base, and G the least.  Further, the percentage of G’s is markedly lower at third 

codon positions than even the low overall G frequency. In contrast to nucleotide bias, 

patterns of AT- and GC-skew are not as consistent across gene types.  Skew for a given 

strand is calculated as (A–T)/(A+T) [or (G–C)/(G+C)] (Perna and Kocher 1995) and 

ranges from +1 if the coding strand has A (G) for every AT (GC) pair to –1 if the coding 

strand always has T (C).  On the whole AT-skew is slightly negative, and GC-skew is 

more negative than AT-skew. In both genomes, AT-skew is most positive in 2nd codon 

positions, and GC-skew is most negative at 3rd codon positions.   

The genome of C. torquata contains the standard 37 genes found in mtDNAs: 13 

protein-coding genes, 2 genes for rRNAs, and 22 genes for tRNAs (Boore 1999). The R. 

                                                
1 Herein, “ nucleotide bias” refers to unequal nucleotide frequencies (i.e., departures from 
25% each) and “codon bias” to unequal frequencies of the codons that code for a single 
amino acid (e.g., UUA used for leucine more often than UUG).  “Skew” will refer 
specifically to the orientation of hydrogen-bonded pairs in the molecule (e.g. whether the 
coding strand contains the G of a GC pair or the C). 



  p. 15 

pachyptila fragment contains 9 complete protein-coding genes (atp8, cox1, cox2, cox3, 

cob, nad1, nad2, nad3, nad6) and portions of two others (atp6, nad4), as well as both 

rRNA genes (mLSU, mSSU) and 16 tRNA genes (trnA, -C, -D, -G, -I, -K, -L1, -L2, -M, -

N, -Q, -S1, -S2, -V, -W, -Y); the remaining genes (nad4L, nad5, and trnE, -F, -H, -P, -R, -

T) and the UNK are presumably in the unsequenced portion. As seen in all other annelids 

to date, all genes in both genomes are encoded on a single strand. 

Start and stop codon usage also shows patterns of bias.  Start codons in protein-

coding genes are highly biased towards ATG over ATA; ATG is observed in 12 of 13 

coding genes in C. torquata (nad4 uses ATA) and all 10 R. pachyptila coding genes for 

which the 5’ end is known.  In addition, overlap typically exists between the presumptive 

stop codon (TAA or TAG) and the 5’ end of the next gene.  In other words, some stop 

codon bases appear to be part of the transcript of the down stream gene (illustrated in 

Supplementary Information). For the purposes of annotation, the stop codon in all such 

cases is assumed to be incomplete (see Ojala, Montoya and Attardi 1981), and the shared 

bases assigned to the downstream gene. 

There is considerable codon usage bias in both genomes as well, with some 

codons within a group being used more than an order of magnitude more frequently than 

others (Table 3). In codons that exhibit four-fold degeneracy, triplets ending in G tend to 

be the least used as expected from overall nucleotide frequencies. However, codons 

ending in A tend to be the most common within a codon group despite the slightly higher 

prevalence of T’s in nucleotide frequency.  In 2-fold codon groups, the use of XXG tends 

to be considerably less than XXA, and use of XXC is somewhat less than XXT. CCG 

(Pro) and CGG (Arg) were never observed in R. pachyptila. 



  p. 16 

Putative tRNA structures are depicted for all recovered tRNA genes in Figures 2 

and 3 (C. torquata and R. pachyptila, respectively).  Most possess the common cruciform 

structure, with an acceptor arm, anticodon arm, TΨC arm, DHU arm, and associated loop 

regions.  In C. torquata, trnS2 and -V have shortened TΨC stems, and trnN in R. 

pachyptila is missing the TΨC entirely.  Additionally, trnS1 and -S2 in R. pachyptila 

have no DHU stems.  trnS1 and –S2 are shown without DHU stems despite the potential 

for some base pairing; the lack of DHU stems is a widespread feature of mitochondrial 

tRNA genes (Dirheimer et al. 1995).  Also of interest is the single unpaired nucleotide on 

the 5’ side of the acceptor arm of the trnL2 gene of R. pachyptila, confirmed in three 

independent sequencing reads.   

 

Phylogenetic analyses 

A single shortest tree was recovered under parsimony for both the DNA and AA 

datasets.  The DNA tree is shown in Figure 4a (16,680 steps, C.I. =0.549), and the AA 

tree in Figure 4b (12,645 steps, C.I. =0.756).  Monophyly of the Annelida was recovered 

in both trees, as both topologies are consistent with a monophyletic Brachiopoda (100% 

bootstrap support in both analyses).  Also in both trees, P. gouldii is sister to Annelida, 

and the two siboglinids (R. pachyptila and G. brachiosum) cluster together. There are two 

main differences between the trees.  In the DNA tree, the oligochaete and hirudinean fall 

outside of the polychaetes, whereas in the AA tree they are inserted among polychaetes.  

The arrangement of mollusks also differs between the two trees.  In the DNA tree, the 

mollusks are monophyletic with the polyplacophoran basal, the two gastropods together, 

and the cephalopod in the most derived position.  In the AA tree, the cephalopod and 
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polyplacophoran are more closely related to the sipunculan and annelids (bootstrap 

support 83%) than to the gastropods. 

For the ML nucleotide data, Modeltest chose the GTR+I+G model as the best fit 

to the data (nucleotide frequencies A=0.2557, C=0.1899, G=0.1942, T=0.3602; rates 

A⇔C 1.6203, A⇔G 3.4278, A⇔T 1.6946, C⇔G 2.4572, C⇔T 3.6315, G⇔T 1.000; 

proportion of invariable sites 0.1993, gamma shape parameter 0.8916).  The single best 

maximum likelihood tree  (-ln likelihood = 67626.63583) obtained with this model bears 

a strong similarity to both the DNA and AA trees (Figure 4c).  Bootstrap support of 

100% was found for an Annelida+Sipuncula clade with Sipuncula nested within the 

group as sister to the maldanid Clymenella torquata. Limited support (67% bootstrap 

support) for hirudineans and oligochaetes, the Clitellata, within polychaetes was also 

found. 

The gene-order analysis produced 15 equally parsimonious trees of 112 steps. The 

strict consensus of these trees (see supplementary information) contained far less 

resolution than the trees derived from nucleotide or amino acid sequences with only three 

supported nodes. Consistent with other analyses, the two gastropods clustered together 

with 100% bootstrap support.  Ninety-one percent support was also recovered for the 

node containing all annelids and P. gouldii.  A grouping of this clade as sister to  L. 

rubellus had weak support (53%).  To determine if this lack of resolution was due to the 

parsimony method of analyzing gene order or intrinsic to the data, GRAPPA 1.6 

breakpoint and inversion distances were also calculated. However, in these trees 

Brachiopoda and Mollusca interdigitated to a large degree (not shown). Neither algorithm 

can handle partial genomes; thus, P. gouldii, G. brachiosum, H, robusta, and R. 
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pachyptila had to be excluded from these analyses, further reducing the phylogenetic 

inferences that could be made.  It thus appears that all of these gene order algorithms are 

sensitive to the disparate rates of change present in our dataset. 
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DISCUSSION 

  The present study covers all major recognized clades of annelids (Rouse and 

Fauchald 1997).  Annelid mitochondrial gene order appears to be evolutionarily 

conserved. With the exception of trnK’s placement in C. torquata, and as far as could be 

determined for R. pachyptila, both genomes examined here have the same gene order as 

Lumbricus terrestris and the fragments of Galathealinum brachiosum and Helobdella 

robusta. Platynereis dumerilii differs in the placement of the UNK region and a few 

tRNAs (Figure 1). In contrast to annelids, mollusks display considerable gene order 

variation over a similar timescale (e.g. Dreyer and Steiner 2004).  For example, even 

within Gastropoda and Cephalopoda large numbers of rearrangements are common (e.g. 

Kurabayashi and Ueshima 2000, Serb and Lydeard 2003). The three brachiopods also 

display very dissimilar gene orders. The origins of major taxa in these groups date back 

to the Cambrian (approximately 540 MYA) (Knoll and Carroll 1999). Thus, it appears 

that there may be a considerable difference in how annelid, mollusk, and brachiopod 

mitochondrial genomes evolve. This difference is interesting because of the apparent 

close relationship of these lophotrochozoan taxa. These results raise the possibility that 

gene order is highly variable in general across lophotrochozoan taxa, and that only select 

subgroups exhibit conserved gene orders (e.g., Annelida).  If true, this situation may have 

considerable repercussions on how mtDNA gene order data can be used to infer 

evolutionary history among different animal clades. 
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Phylogenetic Relationships 

The AA parsimony and DNA likelihood phylogenetic analyses are consistent with 

previous findings that place Clitellata (McHugh 1997; Rota, Martin and Erséus 2001; 

Bleidorn, Vogt and Bartolomaeus 2003) and siboglinids (McHugh 1997; Rouse and 

Fauchald 1997; Kojima 1998; Halanych et al. 1998; 2001) as derived “polychaetes”. 

Thus, the last common ancestor of “Polychaeta” and Annelida are one and the same.  

However bootstrap values (67%  likelihood, <50% for AA parsimony) for this result 

were weak and Shimodaira-Hasegawa tests (Shimodaira and Hasegawa 1999), fell short 

of significant values (in both cases, p=0.14, 1000 replicates with RELL option). An 

alternative topology in the nucleotide parsimony analysis was not well supported. 

Clearly, considerably more taxa need to be sampled to understand the robustness of these 

results and placement of these groups within annelids.  The groupings R. pachyptila + G. 

brachiosum and H. robusta + L. terrestris were highly supported in all sequence analyses 

in agreement with morphological expectations.  An additional result consistently 

recovered by sequenced-based analyses was placement of the sipunculan as sister to or 

inside Annelida (Shimodaira-Hasegawa test p = 0.003). Boore and Staton (2002) first 

reported this result using many of the same mtDNA sequences used herein.  Thus, 

although gene order may be uninformative in this case, there is high support from both 

DNA and amino acid sequences for an Annelida/Sipuncula clade to the exclusion of 

mollusks and brachiopods. Interestingly, nuclear large ribosomal subunit data also 

weakly supports sipunculans as the sister clade to annelids (Passamaneck and Halanych, 
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in prep). The likelihood tree provides the first suggestion that Sipuncula is within 

Annelida, but this finding requires additional verification. 

In contrast to the sequence-based data sets, the gene order analysis offers little 

resolution. This result is to be expected with the limited observed variation in annelid 

gene order.  Nonetheless, annelids and the sipunculan cluster together because of 

identical arrangement of the 11 genes between cox1 and cob (inclusive) and the sequence 

mSSU—trnV—mLSU. The latter sequence appears to be somewhat conserved across 

lophotrochozoan clades (it is found in 10 of the 23 lophotrochozoan taxa for which data 

are currently available in GenBank), and potentially in other protostomes as well. 

Further, the subsequence trnV–mLSU is found in 16 of the 23 lophotrochozoan genomes, 

and some protostomes.  In any case, based on the available data, gene order appears to be 

of limited utility for relationships within the annelids because of its highly conserved 

nature.  All rearrangements seen so far are minor and found in single taxa only, although 

with greater taxonomic coverage potential synapomorphic gene orders may emerge.  

Apparently, both within annelids and between annelids and other lophotrochozoans, there 

is no consistent mechanism controlling the rate or types of gene order modifications.  In 

contrast to the lack of phylogenetic signal in gene order among annelids, the resolution 

offered by sequence-based analyses holds promise. 

 

 

Mitochondrial Genome Organization and Structure 

The two genomes presented here also exhibit the pattern of post-transcriptional 

modification and splicing described by Ojala, Montoya, and Attardi et al. (1981), in 
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which many stop codons are incomplete in the transcript and are filled in by post-

transcriptional editing machinery. This type of splicing is presumed to occur in several 

genes in both the C. torquata and the R. pachyptila genomes (see appendices 1 and 2).  In 

the majority of these cases, the overlap in question contains an in-frame stop codon (TAA 

or TAG), but it is not presumed to be functional.  Moreover, in several cases there is no 

in-frame stop codon at or near the end of the protein-encoding gene, making post-

translational addition of a stop codon the only plausible mechanism (see supplementary 

Figure 2).  One example is the nad1/trnI junction in C. torquata, where nad1 presumably 

ends with T__, and trnI begins with GA, such that assigning more of the codon (TG_ or 

TGA) to nad1 still does not produce a stop codon.  Additionally in C. torquata, the last 

six bases of nad4 (GGCCCT) appear to be used as the first six of trnC; a seven-base 

overlap could give nad4 an incomplete TA_ stop codon, but the next base is a T, and 

therefore it is not possible to generate a full stop codon from the primary sequence. 

The AT-bias seen in both genomes seems to be contributing to a strong codon 

bias in protein-coding genes.  Although the R. pachyptila genome is incomplete, the 

absence of two GC-rich codons (CCG, encoding proline, and CGG, encoding arginine) 

may be linked to the low percentage of G and C.  However, even given these low 

frequencies in the protein-coding genes as a whole, the probability of never observing 

CCG (Pro) in 160 proline codons given an average G content of 12% is 

! 

(0.12)
0
(1" 0.12)

160
=1.31#10

"9 , and the probability of never seeing CGG (Arg) in 53 

arginine codons is 

! 

(0.12)
0
(1" 0.12)

53
= .0011 (both assuming independence of codons).  

Thus, the amount of AT-bias alone does not adequately explain the lack of these two 

codons and suggests that some other mechanism(s) is responsible for the observed codon 
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bias.  Cardon et al. (1994) discuss the paucity of CG dinucleotides in metazoan 

mitochondrial genomes regardless of their position in codons (i.e. positions (I,II), (II,III), 

and (III,I)) and overall low usage of arginine (CGN) in mitochondrial proteomes.  Indeed, 

arginine is the least frequent of all amino acids possessing four-fold degenerate codons in 

both C. torquata and R. pachyptila, and is even less frequent than some two-fold 

degenerate amino acids.  Based on the symmetrized odds-ratios (ρNN, where NN is the 

dinucleotide in question) of Cardon et al. (1994), R. pachyptila does show CG 

suppression (ρCG=0.5299; 0.78 ≤ ρNN ≤ 1.23 is considered the normal range). Suppression 

of CG dinucleotides in vertebrate nuclear genomes has been linked to mutation to TG by 

methylation of the C followed by deaminization to T.  This cannot underlie CG 

suppression in mtDNAs because mitochondria lack the methylation pathway, and 

because mtDNAs do not usually contain an excess of TG dinucleotides (R. pachyptila 

ρTG=0.83).  Although no simple explanation has been found, the authors suggest that CG 

suppression is correlated with small genome size and "streamlined" mtDNA organization. 

R. pachyptila is a large tubeworm found at Eastern Pacific hydrothermal vent 

fields. Early genetic analyses on this species led to speculation that hydrothermal vent 

animals would harbor a high GC nucleotide composition because the extra hydrogen 

bond, when compared to AT base pairing, would confer additional stability in the 

potentially high-temperature and reducing environment (Dixon, Simpson-White, and 

Dixon 1992).  Although high GC content has been documented in thermophilic microbes 

(Woese et al. 1991), R. pachyptila’s low GC content (a pervasive feature of metazoan 

mtDNAs in general) argues against such temperature-driven evolution in R. pachyptila.  

Possibly, the higher GC content in R. pachyptila postulated by Dixon and colleagues is 
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restricted to the nuclear genome; however, it is unclear why mitochondrial and nuclear 

genomes would respond in different ways to the same environmental pressure if this were 

true. 

 

Genomic Amplification and Sequencing 

Our difficulties in amplifying and cloning the UNK region of C. torquata and R. 

pachyptila likely stem from regulatory aspects of this region of the molecule. In R. 

pachyptila, our long PCR reactions for the region cob–nad4  repeatedly generated 3-5 

bands, even though the reactions employed two ~30mer species-specific primers. 

Attempts to clone the band of the expected size resulted in very low transformation 

efficiencies.  Of three clones sequenced, each contained an apparent splice in a similar, 

but not exact, position just downstream of atp6, indicating host removal of the genes 

between atp6 and nad4 (presumably containing trnW, UNK, trnH, nad5, trnF, -E, -P, and 

-T).  Sequencing of the 3’ end of these clones provided the complete gene sequences for 

trnW and atp6 but the splice prevented accurate determination of what lay farther 

downstream.  A similar region was apparently unclonable in the sheared fragments of C. 

torquata’s mt-genome and had to be obtained by direct sequencing. Boore and Brown 

(2000) had similar problems when obtaining the similar region in Platynereis dumerilii, 

and suggested that the presence of signaling elements in UNK disrupted PCR. Our 

observations suggest the UNK region is identifiable as a foreign origin of replication and 

is spliced out by at least some E. coli cell types (in this case DH5α and JM109—both of 

which are recA–) in addition to possibly interfering with PCR.  Alternative strategies may 

need to be developed to completely sequence large numbers of complete mitochondrial 
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genomes in order to avoid the need to direct-sequence and primer-walk the region 

containing UNK. 

 

CONCLUSIONS 

We have expanded the phylogenetic spread of annelid taxa whose mitochondrial 

genomes have been sequenced.  The high similarity of gene order across annelids 

provides sharp contrast to the variation observed in mollusks and brachiopods. In both 

cases, the phylogenetic utility of gene-order data may be limited. The nucleotide and 

amino acid data, however, produced informative trees with some measure of support.  

Our results are concordant with the findings of Boore and Brown (2000) and Boore and 

Staton (2002) on annelid relationships and the relation of Sipuncula to Annelida.  



  p. 26 

Acknowledgements 

We thank Tim Shank for R. pachyptila tissues. Early drafts of this paper were greatly 

improved by comments from Lauren Mullineaux, Stace Beaulieu, and Lara Gulmann; we 

also thank the two anonymous reviewers for their thorough and helpful comments. 

Support by CICOR to RJM is gratefully acknowledged. This work was support by the 

National Science Foundation grants (DEB-0075618 and EAR-0120646) to KMH.  

This work is WHOI contribution number 11244.



  p. 27 

Literature Cited 
 
 Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local 

alignment search tool. J. Mol. Biol. 215:403-410. 

Bader, D. A., Moret, B. M. E. and Yan, M. 2001. A linear-time algorithm for computing 

inversion distance between signed permutations with an experimental study. J. Comput. 

Biol. 8: 483-491. 

Blanchette, M., T. Kunisawa, and D. Sankoff. 1999. Gene order breakpoint evidence and 

animal mitochondrial phylogeny. J. Mol. Evol. 49:193-203. 

Bleidorn, C., L. Vogt, and T. Bartolomaeus. 2003. A contribution to sedentary polychaete 

phylogeny using 18S rRNA sequence data. J Zool. Syst. Evol. Res. 41:186-195. 

Boore, J. L. 1999. Animal mitochondrial genomes. Nucl. Acid. Res. 27:1767-1780. 

Boore, J. L., and W. M. Brown. 2000. Mitochondrial genomes of Galathealinum, Helobdella, 

and Platynereis: Sequence and gene rearrangement comparisons indicate the Pogonophora 

is not a phylum and Annelida and Arthropoda are not sister taxa. Mol. Biol. Evol. 17:87-

106. 

Boore, J. L., and W. M. Brown. 1998. Big trees from little genomes: mitochondrial gene order 

as a phylogenetic tool. Curr. Opin. Genet. Dev. 8:668-674. 

Boore, J. L., and W. M. Brown. 1994. Complete DNA sequence of the mitochondrial genome 

of the black chiton, Katharina tunicata. Genetics 138:423-443. 

Boore, J. L., and J. L. Staton. 2002. The mitochondrial genome of the Sipunculid 

Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Mol. 

Biol. Evol. 19:127-137. 

Boore, J. L., M. Medina, and L.A. Rosenberg. 2004. Complete sequences of the highly 



  p. 28 

rearranged molluscan mitochondrial genomes of the scaphopod Graptacme eborea and the 

bivalve Mytilus edulis. Mol Biol Evol 21: 1492-1503. 

Bremer, K. 1994. Branch support and tree stability. Cladistics 10:295-304. 

Cardon, L. R., C. Burge, D. A. Clayton and S. Karlin. 1994. Pervasive CpG suppression in 

animal mitochondrial genomes. Proc. Nat. Acad. Sci. USA 91: 3799-3803. 

DeJong, R. J., A. M. Emery, and C. M. Adema. 2004. The mitochondrial genome of 

Biomphalaria glabrata (Gastropoda, Basommatophora), intermediate host of Schistosoma 

mansoni. J. Parasitol. in press. 

Dirheimer, G., G. Keith, P. Dumas and E. Westhof. 1995. Primary, secondary, and tertiary 

structures of tRNAs. Pp. 93-126 in D. Söll and U. RajBhandary, eds. tRNA: Structure, 

Biosynthesis, and Function. ASM Press, Washington, DC. 

Dixon, D. R., R. Simpson-White, and L. R. J. Dixon. 1992. Evidence for thermal stability of 

ribosomal DNA sequences in hydrothermal-vent organisms. J. Mar. Biol. Assoc. U.K. 

72:519-527. 

Dreyer, H., and G. Steiner. 2004. The complete sequence and gene organization of the 

mitochondrial genome of the gadilid scaphopod Siphonondentalium lobatum (Mollusca). 

Mol. Phylogenet. Evol. 31:605-617. 

Folmer, O., M. Black, W. Hoeh, R. Lutz, and R. Vrijenhoek. 1994. DNA primers for 

amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan 

invertebrates. Mol. Mar. Biol. Biotech. 3:294-299. 

Grande, C., J. Templado, J. L. Cervera, and R. Zardoya. 2002. The complete mitochondrial 

genome of the nudibranch Roboastra europaea (Mollusca: Gastropoda) supports the 

monophyly of opisthobranchs. Mol. Biol. Evol. 19:1672-1685. 



  p. 29 

Halanych, K. M. 2004. The new view of animal phylogeny. Ann. Rev. Ecol. Evol. Syst. 

35:229-256. 

Halanych, K. M., T. G. Dahlgren, and D. McHugh. 2002. Unsegmented annelids? Possible 

origins of four lophotrochozoan worm taxa. Integrat. Compar. Biol. 42:678-684. 

Halanych, K. M., R. A. Feldman, and R. C. Vrijenhoek. 2001. Molecular evidence that 

Sclerolinum brattstromi is closely related to vestimentiferans, not to frenulate 

pogonophorans (Siboglinidae, Annelida). Biol. Bull. 201:65-75. 

Halanych, K. M., R. A. Lutz, and R. C. Vrijenhoek. 1998. Evolutionary origins and age of 

vestimentiferan tube-worms. Cah. Biol. Mar. 39:355-358. 

Hatzoglou, E., G. C. Rodakis, and R. Lecanidou. 1995. Complete sequence and gene 

organization of the mitochondrial genome of the land snail Albinaria caerulea. Genetics 

140:1353-1366. 

Helfenbein, K. G., and J. L. Boore. 2004. The mitochondrial genome of Phoronis architecta - 

Comparisons demonstrate that phoronids are lophotrochozoan protostomes. Mol. Biol. 

Evol. 21:153-157. 

Helfenbein, K. G., W. M. Brown, and J. L. Boore. 2001. The complete mitochondrial genome 

of the articulate brachiopod Terebratalia transversa. Mol. Biol. Evol. 18:1734-1744. 

Hoffmann, R. J., J. L. Boore, and W. M. Brown. 1992. A novel mitochondrial genome 

organization for the blue mussel, Mytilus edulis. Genetics 131:397-412. 

Knoll, A., and S. B. Carroll. 1999. Early animal evolution: Emerging views from comparative 

biology and geology. Science 284:2129-2137. 

Kojima, S. 1998. Paraphyletic status of Polychaeta suggested by phylogenetic analysis based 

on the amino acid sequences of elongation factor-1-alpha. Mol. Phylogenet. Evol. 9:255-



  p. 30 

261. 

Kurabayashi, A., and R. Ueshima. 2000. Complete sequence of the mitochondrial DNA of the 

primitive opisthobranch gastropod Pupa strigosa: systematic implication of the genome 

organization. Mol. Biol. Evol. 17:266-277. 

Lavrov, D. V., W. M. Brown, and J. L. Boore. 2004. Phylogenetic position of the 

Pentastomida and (pan)crustacean relationships. Proc. R. Soc. Lond. B. 271:537-544. 

Maddison, D. R., and W. P. Maddison. 2000. MacClade. Sinauer Associates, Inc., Sunderland, 

MA. 

Mangum, C. P. 1964. Studies on speciation in Maldanid polychaetes of the North American 

Atlantic Coast. II. Distribution and competitive interaction of five sympatric species. 

Limnol. Oceanogr. 9: 12-26. 

McHugh, D. 1997. Molecular evidence that echiurans and pogonophorans are derived 

annelids. Proc. Natl. Acad. Sci. USA 94:8006-8009. 

McHugh, D. 2000. Molecular Phylogeny of the Annelida. Can. J. Zool. 78:1873-1884. 

Noguchi, Y., Endo, K., Tajima, F. and Ueshima, R. 2000. The mitochondrial genome of the 

brachiopod Laqueus rubellus. Genetics 155: 245-259. 

Ojala, D., J. Montoya, and G. Attardi. 1981. tRNA punctuation model of RNA processing in 

human mitochondria. Nature 290:470-474. 

Palumbi, S. R. 1996. Nucleic acids II: The polymerase chain reaction. Pp. 205-248 in D. M. 

Hillis, C. Mortiz, and B. K. Mable, eds. Molecular Systematics. Sinauer Associates, Inc., 

Sunderland, Massachusetts. 

Perna, N. T. and Kocher, T. D. 1995. Patterns of nucleotide composition at fourfold 

degenerate sites of animal mitochondrial genomes. J Mol. Evol. 41: 353-358. 



  p. 31 

Posada, D., and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. 

Bioinformatics 14:817-818. 

Rota, E., P. Martin, and C. Erséus. 2001. Soil-dwelling polychaetes: enigmatic as ever? Some 

hints on their phylogenetic relationship as suggested by a maximum parsimony analysis of 

18S rRNA gene sequences. Contri. Zool. 70:127-138. 

Rouse, G. W., and K. Fauchald. 1997. Cladistics and polychaetes. Zool. Scripta 26:139-204. 

Rouse, G. W., and K. Fauchald. 1995. The articulation of annelids. Zool. Scripta 24:269-301. 

Rouse, G. W., and F. Pleijel. 2001. Polychaetes. Oxford University Press, New York. 

 Serb, J. M., and C. Lydeard. 2003. Complete mtDNA sequence of the North American 

freshwater mussel, Lampsilis ornata (Unionidae): An examination of the evolution and 

phylogenetic utility of mitochondrial genome organization in Bivalvia (Mollusca). Mol. 

Biol. Evol. 20:1854-1866. 

Shimodaira, H., and M. Hasegawa. 1999. Multiple comparisons of Log-likelihoods with 

applications to phylogenetic inference. Mol. Biol. Evol. 16:1114-1116. 

Southward, A. J. and E. C. Southward. 1988. Pogonophora: Tube-worms dependent on 

endosymbiotic bacteria. Anim. Plant Sci. 1: 203-207. 

Stechmann, A., and M. Schlegel. 1999. Analysis of the complete mitochondrial DNA 

sequence of the brachiopod Terebratulina retusa places Brachiopoda within the 

protostomes. Proc. Roy. Soc. Lond. Ser. B. 266:2043. 

Swofford, D. L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other 

Methods). Sinauer Associates, Inc., Sunderland, MA. 

Terrett, J. A., S. Miles, and R. H. Thomas. 1996. Complete DNA sequence of the 

mitochondrial genome of Cepaea nemoralis (Gastropoda: Pulmonata). J. Mol. Evol. 



  p. 32 

42:160-168. 

Thompson, J., T. Gibson, F. Plewniak, F. Jeanmougin, and D. Higgins. 1997. The 

CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment 

aided by quality analysis tools. Nucl. Acid. Res. 25:4876-4882. 

Tomita, K., Yokobori, S. I., Oshima, T., Ueda, T. and Watanabe, K. 2002. The cephalopod 

Loligo bleekeri mitochondrial genome: multiplied noncoding regions and transposition of 

tRNA genes. J Mol. Evol. 54: 486-500. 

Wilding, C. S., P. J. Mill, and J. Grahame. 1999. Partial sequence of the mitochondrial 

genome of Littorina saxatilis: Relevance to gastropod phylogenetics. J. Mol. Evol. 

48:0348-0359. 

Woese, C.R., L. Achenbach, P. Rouviere and L. Mandelco. 1991. Archaeal phylogeny: 

reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain 

composition-induced artifacts. Syst. Appl. Microbiol. 14:364-371. 



  p. 33 

 

Table 1. Taxa used in phylogenetic analyses 
Species Clade Nucleotides GenBank 

Accession 
Clymenella torquata Annelida, Scolecida, Maldanidae  15,538 

complete 
AY741661 

Riftia pachyptila Annelida, Canalipalpata, Siboglinidae  12,016 
partial 

AY741662 

Galathealinum brachiosum Annelida, Canalipalpata, Siboglinidae  7,576  
partial 

AF178679 

Platynereis dumerilii Annelida, Aciculata, Nereididae  15,619 
complete 

NC_000931 

Lumbricus terrestris  Annelida, Oligochaeta, Lumbricidae  14,998 
complete 

NC_001673 

Helobdella robusta  Annelida, Hirudinea, Glossiphoniidae 7,553 
partial 

AF178680 

Phascolopsis gouldii  Sipuncula 7,470 
partial 

 AF374337 

Katharina tunicata  Mollusca, Polyplacophora 15,532 
complete 

NC_001636 

Loligo bleekeri  Mollusca, Cephalopoda 17,211  
complete 

NC_002507 

Albinaria caerulea  Mollusca, Gastropoda 14,130  
complete 

NC_001761 

Cepaea nemoralis  Mollusca, Gastropoda 14,100  
complete 

NC_001816 

Terebratulina retusa  Brachiopoda, Articulata  15,451  
complete 

NC_000941 

Laqueus rubellus Brachiopoda, Articulata 14,017 
complete 

NC_002322 

Terebratalia transversa  Brachiopoda, Articulata  14,291  
complete 

NC_003086 
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Table 2.  Base Composition, Bias, and Skew 
A.  C. torquata       
        
    Protein Coding   rRNA tRNA Whole Genome 

  All Positions 1st Positions 2nd Positions 3rd Positions       
A 31.17% 32.19% 18.19% 43.11% 38.99% 36.17% 32.96% 
T 35.03% 27.45% 43.81% 33.83% 29.49% 31.74% 34.28% 
A+T 66.20% 59.64% 62.00% 76.94% 68.48% 67.91% 67.24% 
C 20.66% 19.97% 24.59% 17.45% 17.49% 15.73% 19.46% 
G 13.14% 20.40% 13.41% 5.61% 13.99% 16.36% 13.30% 
AT-skew -0.06 0.08 -0.41 0.12 0.14 0.07 -0.02 
GC-skew -0.22 0.01 -0.29 -0.51 -0.11 0.02 -0.19 

base pairs 11146 3716 3715 3715 2116 1424 15538 
        
        

B.  R. pachyptila       
        
    Protein Coding   rRNA tRNA Whole Genome 

  All Positions 1st Positions 2nd Positions 3rd Positions       
A 29.55% 28.54% 18.40% 41.79% 38.02% 34.14% 31.49% 
T 36.50% 29.73% 43.55% 36.23% 28.47% 32.02% 34.70% 
A+T 66.05% 58.27% 61.95% 78.02% 66.50% 66.16% 66.19% 
C 21.87% 21.86% 24.92% 18.81% 19.43% 16.59% 20.96% 
G 12.07% 19.88% 13.14% 3.18% 14.07% 17.16% 12.84% 
AT-skew -0.11 -0.02 -0.41 0.07 0.14 0.03 -0.05 
GC-skew -0.29 -0.05 -0.31 -0.71 -0.17 0.03 -0.24 

base pairs 8799 2933 2930 2928 2146 1037 12016 
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Table 3.  Codon usage.1 
                              
    C. torquata   R. pachyptila       C. torquata   R. pachyptila 

Codon AA N %   N %   Codon AA N %   N % 
                

UUU Phe (F) 211 75  143 61  UCU Ser (S) 70 33  83 38 
UUC Phe 70 25  92 39  UCC Ser 37 18  50 23 

    281     235    UCA Ser 99 47  83 38 
UUA Leu (L) 218 95  191 97  UCG Ser 3 1  3 1 
UUG Leu 12 5  5 3      209     219   

    230     196    CCU Pro (P) 70 39  79 49 
CUU Leu (L) 108 33  116 40  CCC Pro 20 11  34 21 
CUC Leu 51 16  45 15  CCA Pro 77 43  47 29 
CUA Leu 150 46  127 43  CCG Pro 12 7  0 0 
CUG Leu 14 4  5 2      179     160   

    323     293    ACU Thr (T) 64 26  75 41 
AUU Ile (I) 238 73  196 77  ACC Thr 42 17  41 22 
AUC Ile 86 27  59 23  ACA Thr 132 54  65 36 

    324     255    ACG Thr 5 2  2 1 
AUA Met (M) 224 90  138 84      243     183   
AUG Met 25 10  26 16  GCU Ala (A) 87 35  69 36 

    249     164    GCC Ala 58 23  51 27 
GUU Val (V) 46 29  34 26  GCA Ala 96 39  68 36 
GUC Val 21 13  19 15  GCG Ala 6 2  2 1 
GUA Val 83 52  76 58      247     190   
GUG Val 9 6  2 2  UGU Cys (C) 15 11  18 15 

    159     131    UGC Cys 16 12  13 11 
UAU Tyr (Y) 76 65  66 74  UGA Trp (W) 80 61  85 73 
UAC Tyr 41 35  23 26  UGG Trp 20 15  1 1 

    117     89        131     117   
UAA Ter (.) 7 78  3 75  CGU Arg (R) 13 22  10 19 
UAG Ter 2 22  1 25  CGC Arg 3 5  5 9 

    9     4    CGA Arg 38 66  38 72 
CAU His (H) 53 64  49 69  CGG Arg 4 7  0 0 
CAC His 30 36  22 31      58     53   

    83     71    AGU Ser (S) 15 15  6 9 
CAA Gln (Q) 71 93  56 97  AGC Ser 12 12  6 9 
CAG Gln 5 7  2 3  AGA Ser 64 62  53 78 

    76     58    AGG Ser 12 12  3 4 
AAU Asn (N) 80 54  72 67      103     68   
AAC Asn 67 46  35 33  GGU Gly (G) 36 19  30 19 

    147     107    GGC Gly 37 19  19 12 
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AAA Lys (K) 79 95  62 95  GGA Gly 68 35  101 63 
AAG Lys 4 5  3 5  GGG Gly 52 27  10 6 

    83     65      193   160  
GAU Asp (D) 33 52  28 53         
GAC Asp 30 48  25 47         

    63     53           
GAA Glu (E) 57 80  59 97         
GAG Glu 14 20  2 3         

  71   61          
                  TOTAL 3578     2932   

 
1Stop codons are only listed if complete. 

AA=Amino Acid, N=number of occurrences in all protein-encoding genes observed.
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FIG. 1 – Gene orders of annelid and the sipunculan mitochondrial genomes. Abbreviations 

are as explained in the text. Genomes have been arbitrarily linearized at cox1 after Boore 

and Brown (2000).  Dashed lines with ellipses in Riftia, Galathealinum, Helobdella, and 

Phascolopsis indicate unsequenced regions whose gene order is unknown.  Shaded boxes 

highlight different sets of gene orders conserved among the taxa shown. 

 

 FIG. 2 – Clymenella torquata assumed tRNA structure diagrams.  tRNAs are designated 

by their single-letter abbreviations. 

 

FIG. 3 –  Riftia pachyptila assumed tRNA structure diagrams.  tRNAs are designated by 

their single-letter abbreviations. 

 

FIG. 4 –  Phylogenetic reconstructions.  A. The single best DNA sequence parsimony tree 

(protein-coding genes and rRNA; see text for details).  B. The single best amino-acid 

parsimony tree.  Numbers above branches are bootstrap percentages out of 1000 replicates 

(percentages below 50 not shown).  Numbers below branches are Bremer support values 

(decay indices).  C. DNA sequence maximum likelihood tree (model chosen via Modeltest 

3.5).  Numbers nearest the node indicate bootstrap percentage out of 500 replicates 

(percentages below 50 not shown). 



Platynereis
(Polychaeta)

V A ImLSU L1S2 L2 nad1 K nad3 S1 nad2 CMcox1 N cox2 G UNK Y atp8 D cox3 Q nad6 cob atp6W R H mSSUnad4nad4Lnad5 F E P T

Riftia
(Polychaeta)

mLSU L1 S2 L2 nad1 I K nad3 S1 nad2Acox1 N cox2 D atp8 Y G cox3 Q nad6 cob W atp6 nad4 C M mSSU V..... .....

Helobdella
(Hirudinea)

mLSU L1 A S2 L2 nad1 I K nad3 S1 nad2cox1 N cox2 D atp8 Y G cox3 Q nad6 cob ..... ..... ..... ..... .....

Lumbricus
(Oligochaeta)

W mLSU L1 S2 L2 nad1 nad3 S1 nad2A Icox1 N cox2 D atp8 Y G cox3 Q nad6 cob mSSU Vatp6 R UNK nad5 F E P T nad4L nad4 C M KH

Clymenella
(Polychaeta)

mLSU L1 S2 L2 nad1 nad3 S1 nad2A Icox1 N cox2 D atp8 Y G cox3 Q nad6 cob mSSU VW atp6 R UNK nad5 F E P T nad4L nad4 C MHK

Phascolopsis
(Sipuncula)

cox1 N cox2 D atp8 Y G cox3 Q nad6 cob VC MP E S2 mLSUmSSU

Galathealinum
(Polychaeta)

mLSU L1 A S2 L2 nad1 I K nad3 S1 nad2cox1 N cox2 D atp8 Y G cox3 Q nad6 cob ..... ..... ..... ..... .....



A

A
A

A
AAA

A

A

A

A
A

AA

A
U U

UUUU

U

U
U

U
U

U
U

GG
G

G

G

G

G

G
G G

C C C C

C

C

C

C

C

C

CC

C C C
A

A

A
A

A

A
A U

U

U

U
U

G

G C

C
Valine

AAA

A

A
A

A

A

A
A
AAAA

A
A U U U

U

U
U
U

U

U
U
U

U

U
G

G

G

GG

G G GG C

C
C

C

C
C

C C

A

A

A
A

A
A

U

U
U

U

U

G

G C

C

A

Tyrosine

A A A
A

A
AAA

A

A
AA

A
A A A

A
UU

U

U
U

U
U

UU

U
U

GG

G

G

G
G
G

G

G

C C

C
C
C
C

C

C

C

C

C

A

A

A
A
A

U

U
U
U

U
G

G
G

C

Methionine Phenylalanine

U
G

C

A

A
A
A
A

A
AAA

A
A

AA

AAAAAA

A A A

A U

U

U

U
U U U

U

U
U
U
U

GG

U
U
U

U
G

G
G

G

G

G
G C

U UC

CC
A

A
A
A

C

C

C

Lysine

A

A

A
A

A

A
AAA

A

AA

AA

A

U

UU

U

U
U

U

U U

U
UU

G
GG

G

G
GG

CC

C

C
C

C

C

C

U

AU

UU

C
A

A

A

A U
U
U

U

G

G

G C

C
C

U

Leucine 1
(CUN)

A

A
AAA

A
AA

A

A
A

A

A

AAA
A
A

A A
U U U U

UU

U

U
U

U

U
U

U

G

G

G

G
G

G

G G
G

G

C C

C
C

C

C
C

U

A

A
A
A

A

U
U
U

U

G

G C

C

Leucine 2
(UUR)

C

A

A
A
A

A

AAAA
A
AA

AA

A

AAA
A
A A A

A

A

U

U

U

U U U
U

U
U

U
U

U
U
U

U
U

U

U
U
U

G

G

G

G
G
G

G

G G
G

G
G

C
C

C

C
C
C

C

C

C

C

A

A

A
A
A

A A

A

A
AAA

A
A

A
A

A
A

A A
A

A

A

A

G
G

G

G

G

G

G

U

U

U

UU
U

U

U

UU
U
U

U
U

U
U

U
U

U

U

U
U
U

U

C C

CC

C

C

C

C
C

Glutamate C

A
A

AAA
A

A
A

A

A

A

AAA

A

A

A

A

U

U

U

U U U U U

U

U
U

U

U
U
U

U

U

U
U

G

GG

G

G

G
G

G

GGG

G G
G

G

G

C C
C

C

C
C

C

C

C
C C

C

C

IsoleucineGlycine

C

A

A A
A

A
AAA

A
A

A
A

A

A
A A

A
A

UU

U
U

U
U
U

UUU
G

G
G

CC

C
C

AU

AU
GC

AU

A U
AU
AU

A

U A

U

A

UA

UU

G

G

CA

UA

U

Histidine

C

A

AAA
A

A

A

A
A A A

U

U

U

U

U

U

G
C

AU
AU

A

U

A

UA

UU G

CA

UU

G

A
A
A
A

C
C

U
U
U
U

U C

G
C

C
A

U UA AA A
C

C

G C

G G
U

Glutamine

AA

A A

A
A

A

A A

A
U

U

U

U
U

U
U U

U

U U U
UUU CCC

A

U
U

C
A

A UUU G

A AU CG

G

G

G

GA A U G

A

A

A
A

A

A
A

U

U

U
U

U

U

CG

Alanine

A

U

C
A

A
A

A
A A

A

AAAA
A
A

A

A

A A A

A
A U

U

U
U

U
U
U

U
U
U

U

U U

U

U

GGGG

G

G

G

G

C C C

C

C

C

C

C

C

U U U G

AAA C

Cysteine

A

AAA
A

AA
A

A
A

A
A
A

A
AAA

A A U
U

UU

U
U
U

U
U

U
U

U

U

C

A

U
U

U

G
G
G

G
G

G

G

G

U UG G
A U U UC

C

CC C

A
U

G
G

C
C
C

Aspartate

C

A

A

A A A

AA

AAA

A

A

A

AAAAA
A

A A
A

A

A
A
A
A
A U

U
U
U
U

U
UU

U
U

U

U
U

U
U

U

U
U U

U

U
G G

G

G

G

G
G

G C

C
C
C

C

C

C

C

Asparagine

G

A

AA

AAA
A

A

A

A

A A
A A A

A U

U U

U

UU
U
U

U
U

UUU
U

G

G

G

G

G

G

G
G

G
C C

CC

C
C

C
C

C

A U

A U
A U

GC

CG
A U

AU
Arginine

C

A
A

AAA
A
A

A

A

AA

A
A
A
A

A

A A A
A

AA

U
U
U
U

U

U

U
U
U

U
U
UUU

U

U
U

U U

GGG

G
G

G
G

G

G G
G
G

C

C C C
C

C
C
C

C

C

C

A

A
A

AA
A

A
A
A

A
A

A A A A
A U U

U
UU

U

UU
U

U

U
U

GG

G

G

G
G

G
GG

G

G G
C C

C
C
C

C

C C

C C

C

A

A
A

A

A

U

U
U

U
G
G

G

C
C

Threonine

A

AAAA

A
AA

A
A

A

A
A
AAAA

A
A A

A
A

U U U U

U
U

U
U
U

U
U

U

U U
U G

G

G
G

G

G

C

C

C

C
C

CC

C

A
A

A
A

A U

U
U

U
U

G

G
G

C

TryptophanProline

C
A

AAA

AAAA
AAA

A A
U U U U

U U

U

U

U
U
U

U
U

U
U U U

U G G

G

G

G
GG

G
G
G

G C

C
C

C

C

A

A

A

A
A

A
A U

U

U
U

U

U
GC

A

A

Serine 1
(AGN)

AA

A

A

A
A

A

A
A

A

A
AU

UU

U

U

U
UU

U

U

U
G

G

G

G
G G

G C

C

C

C

C

C

C
A

A

U

U U
U

A
A

U
U

A

A AU

U U

U

A

A

A

U

U
G

U

C
U
A
GC

U

Serine 2
(UCN) C

A
A

A A A
AA

A A
AA

A

A
A
A

A

AA

A A A
A

A

U
U U U

UUU

U

U
U

U

U
UUU

U

U
U
U

G

G
G

GG

G

G
G

G
G

G
G

C

C C

C

C
C

C

C

C



Valine

C

A A
A

AAA

A
AA

A
A

A
A

A

AAA
A
A A A

U U U

UU

U

U
U

U
U
U

U

U
U

G

G

G

G

GG

G

C

C

C

C

CC

C
C

C

A

A
A

A
A
A
A U

U
U
U

U
U

GCTyrosine

A
A

A
A

A
A

A

AA A

A
AU

U

U
U
U

U

U

U

U

U G

G

G

G

G G

C

C

C CC

GG C
C

CC

C

CG
G

GCCG

U

C
A

A

A

A

U
U
U
U

U
G

A
A

A
U

Leucine 2
(UUR)

A
AA

A
AA

A

AA

A

AA
A
A

A A

U

UU

U

U

U
U
U

U
U

U

U
GGG

G

G
G

GG

G G
G

C C C C

C
C

C

C

C

C

A

A

A

A
AA

A U

U
U

U

U
G

G

C

Methionine

AAA
A

AA
A

A
A

AAAA

A
A A

A
A U U

U

U

U
U
U

U
U

U

U
U

GG

G
G
G

G

G
C C C

C

C
C
C

C

C

CC
C

C

A

A

A

A
A

A U

U

U
U

U

G

G

C

Lysine

A

A

AAA
A

A
AA

A

A
A

A
A

A
U U U

U U
U

U
U

UUU
U

U

U
U

UU

U U

G

G
G

GG

G G
G

C

C

C
C
C

C

C

C

C
A

A

A

A

A U

U

U

U

G

G

G

C

CLeucine 1
(CUN)

AAA

A
AA

A
A

A

A

A

AA

A
A A

A A
AU U U
UU

U
U

U

U
U
U

U
U
U

U U

U

GG

G
G

G

G
G

G G
G

C

C

C

C

C
A
A

A
A

A

A

A

U
U

U
U

U

U

G

Phenylalanine

(not recovered)

Glycine

CA A
A

A

AA

A

A
A

A
A

AA A A A U U

UUU
U

U

U

U
U

U

UUUU

U U G
G

G

G
G

GG

G

CC

C
C

C

C

C

A

A
A
A

A

A U

U

U
U
U

G

G

C

C

Isoleucine

A
AA

A

A

A
A

AAA
A
A

U

U

U
U

U

U
U
U

U

U

U
G

AA GGG

G

G
G

GGG

G GG G
U UC C C

CCC
C

C

C

C C
C

C

A

A
A

A

A

U

U
U

U

G
G

G

C
C

Glutamine

A A
A

AA

A

A
A
AA

A A
A U U

UUUU

U
U
U

U

UU
U

U

U G AU C C

CC
C

C
C

C

C GG
G

G

G

GA CCGG
G

U UG G

A

A

A
A
A

A

U
U

U

U

U

CG

Glutamate

(not recovered)

Histidine

(not recovered)

Alanine

G
G

G

G
G

G
G

G
U

U

U

U

U

U
U
U

U
U
U

U
U
U U U U

U

AGG A

AA
A
A

A

AAA

A A A
UC C C

C

C

C

G

G

G

G

U

U

U A

A

A

A
C

C

C

C

Asparagine

A

A

AAA

A
A

A
A

A

A A
A

G

GG
G

G

G G

G

U
U

U
U

U
U

UU
U

U

U
UUU

U U

C C
C
C

C

C

C

C

C C

C

A

A

A
A

G

G

G

G

U
U

U

U

C

C

Aspartate

A

A
A

A
A

AAA

AA

A

A

A

AAA
A

A AA
A

G

G

G

G

G
G

G

U

U

U
U

U
UU

U

U U U
U

U

UUU
C

C
C

C

C

C

C

A
A

A
A

A
G

G

G

U
U

U
U

U

C

Cysteine

C A A

A

AAA
A

A

A
A
A

AAAAA

A A A U

U
U

U
U
U

U
U

U
U

U
U U U

U

GG
G

G
G

G G
C
C

C

C

CC

A
A

A

A
A

U
U
U

U
U
U

G
GC

C

Arginine

(not recovered)

Serine 1
(AGN)

A

AA

AA
AA

A
A

A U U

UU
U
U

UU

U U
G

G
G

G
G

U U G G C

CCC

C

C

A

A
A

A
A
A

U
U

U
U

U

U
U

G

A
A

A

A
A

A

U

U
U

UU
U

U

U

G

C

C

Serine 2
(UCN)

Tryptophan

C A

AA

A
A

A
A

A

A
AA

AA
AA

A
A A

A
A

U U
U

U

U
U

U
U

U

UU

U U

U
GG

G
G
G

G

C

C

C
C

C

C

C

A

A
A

A
A

U

U
U

U
U

U

GC

A
GProline

(not recovered)

Threonine

(not recovered)

C

A

A

G
G
A

U
U

U
U

G

U
U

A

U

A
A

AA

U U

UU
A

G

U U U C C

CGA

A
A

C

UA

U

A

U
G

U

A
G
U

C

A
A

AU
U

G

U

AAA A

C
C

C C

G

G
G

UUU
U



A. B. C.
Terebratalia
transversa

Laqueus
rubellus

Terebratulina
retusa

Galathealinum
brachiosum

Riftia
pachyptila

Platynereis
dumerilii

Clymenella
torquata

Lumbricus
terrestris

Helobdella
robusta

Phascolopsis
gouldii

Katharina
tunicata

Loligo
bleekeri

Albinaria
caerulea

Cepaea
nemoralis

500 changes

100
218

100
70

100
242

100
63

82
6

60
6

93
4

84
23

93
34

4

21

Brachiopoda

A
n
n
e
l
i
d
a

M
o
l
l
u
s
c
a

Sipuncula

Terebratalia
transversa

Laqueus
rubellus

Terebratulina
retusa

Galathealinum
brachiosum

Riftia
pachyptila

Lumbricus
terrestris

Helobdella
robusta

Clymenella
torquata

Platynereis
dumerilii

Phascolopsis
gouldii

Loligo
bleekeri

Katharina
tunicata

Albinaria
caerulea

Cepaea
nemoralis

500 changes

100
67

94
16

59
9

6

2

99
19

57
9

83
23

100
121

100
107 Brachiopoda

A
n
n
e
l
i
d
a

Sipuncula

M
o
l
l
u
s
c
a

Terebratalia
transversa

Laqueus
rubellus

Terebratulina
retusa

Galathealinum
brachiosum

Riftia
pachyptila

Lumbricus
terrestris

Helobdella
robusta

Clymenella
torquata

Platynereis
dumerilii

Phascolopsis
gouldii

Loligo
bleekeri

Katharina
tunicata

Albinaria
caerulea

Cepaea
nemoralis

Brachiopoda

A
n
n
e
l
i
d
a

Sipuncula

M
o
l
l
u
s
c
a

0.1

100

100

98

67

100

65

55

100

94

100


