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New data from Monoplacophora 
and a carefully-curated dataset 
resolve molluscan relationships
Kevin M. Kocot   1*, Albert J. Poustka2,3, Isabella Stöger4,5, Kenneth M. Halanych   6 & 
Michael Schrödl4,5,7

Relationships among the major lineages of Mollusca have long been debated. Morphological studies 
have considered the rarely collected Monoplacophora (Tryblidia) to have several plesiomorphic 
molluscan traits. The phylogenetic position of this group is contentious as morphologists have 
generally placed this clade as the sister taxon of the rest of Conchifera whereas earlier molecular 
studies supported a clade of Monoplacophora + Polyplacophora (Serialia) and phylogenomic studies 
have generally recovered a clade of Monoplacophora + Cephalopoda. Phylogenomic studies have 
also strongly supported a clade including Gastropoda, Bivalvia, and Scaphopoda, but relationships 
among these taxa have been inconsistent. In order to resolve conchiferan relationships and improve 
understanding of early molluscan evolution, we carefully curated a high-quality data matrix and 
conducted phylogenomic analyses with broad taxon sampling including newly sequenced genomic 
data from the monoplacophoran Laevipilina antarctica. Whereas a partitioned maximum likelihood 
(ML) analysis using site-homogeneous models recovered Monoplacophora sister to Cephalopoda 
with moderate support, both ML and Bayesian inference (BI) analyses using mixture models 
recovered Monoplacophora sister to all other conchiferans with strong support. A supertree approach 
also recovered Monoplacophora as the sister taxon of a clade composed of the rest of Conchifera. 
Gastropoda was recovered as the sister taxon of Scaphopoda in most analyses, which was strongly 
supported when mixture models were used. A molecular clock based on our BI topology dates 
diversification of Mollusca to ~546 MYA (+/− 6 MYA) and Conchifera to ~540 MYA (+/− 9 MYA), 
generally consistent with previous work employing nuclear housekeeping genes. These results provide 
important resolution of conchiferan mollusc phylogeny and offer new insights into ancestral character 
states of major mollusc clades.

Mollusca is the second most diverse animal phylum whose members exhibit an incredible array of body shapes 
and sizes. Many molluscs have important ecological roles in marine, freshwater, and terrestrial environments 
and others are culturally and/or economically important as a source of food, jewellery, or dye1. Despite their 
diversity and importance, understanding of early molluscan evolution remains incomplete and several conflict-
ing phylogenetic hypotheses1–9 have been proposed regarding relationships among the eight major clades (i.e., 
classes): Bivalvia (clams, scallops, oysters, etc.), Caudofoveata (Chaetodermomorpha), Cephalopoda (octopuses, 
squids, and Nautilus), Gastropoda (snails and slugs), Monoplacophora (Tryblidia; deep-sea, limpet-like mol-
luscs), Polyplacophora (chitons), Scaphopoda (tusk shells), and Solenogastres (Neomeniomorpha).

Within Conchifera (Bivalvia, Cephalopoda, Gastropoda, Monoplacophora, and Scaphopoda), the clade of 
molluscs with uni- or bivalved shells, the deep-sea limpet-like Monoplacophora has long been thought to be 
important to understanding early molluscan evolution5,10–14 with most morphology-based hypotheses plac-
ing Monoplacophora sister to a clade of all other conchiferans. However, no published molecular studies have 
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supported this topology to date (but see Philippe and Roure 201215). Studies of molluscan phylogeny employing 
datasets dominated by nuclear ribosomal and mitochondrial genes have generally had poor resolution among 
major lineages10–14. However, one finding of particular interest from these studies was the recovery of a close rela-
tionship of Monoplacophora and Polyplacophora (Serialia)16,17. More recent studies employing PCR-amplified 
fragments of nuclear protein-coding “housekeeping” genes18 or nuclear protein-coding genes obtained from tran-
scriptome and genome data19,20 have instead provided strong support for a clade called Aculifera, which groups 
Polyplacophora with Aplacophora (Caudofoveata + Solenogastres) to form a group of molluscs with calcareous 
sclerites.

Smith et al.19, the only published phylogenomic study to date focused on deep molluscan relationships to 
sample Monoplacophora (specifically Laevipilina hyalina), recovered it as the sister taxon of Cephalopoda. This 
result is inconsistent with the prevailing traditional morphological view placing Monoplacophora sister to all 
other conchiferans3,21–23, but is consistent with some (but not all) palaeontological hypotheses on early molluscan 
diversification24–27. Two subsequent studies included data from L. hyalina but focused on relationships within 
Gastropoda28 or Bivalvia29, and thus had limited taxon sampling outside of those clades. Kocot et al.30 focused 
on among-phylum relationships within Lophotrochozoa but had relatively broad sampling of Mollusca. Most of 
those analyses recovered Monoplacophora as the sister taxon of Conchifera or Cephalopoda, but support for its 
placement was generally weak. Phylogenomic studies have also supported a clade including Gastropoda, Bivalvia, 
and Scaphopoda, although there has been inconsistency in recovered relationships among these taxa19,20,28,30. 
Because conchiferan molluscs are well-represented in the early animal fossil record31,32, understanding their phy-
logeny has important implications for understanding early animal evolution and the identity of enigmatic fossil 
taxa hypothesized to be stem-group molluscs.

Results and Discussion
We sequenced a draft genome for the monoplacophoran Laevipilina antarctica. Unfortunately, because of the 
small size of this species, there was only adequate material for paired-end Illumina sequencing library preparation 
with insufficient material for mate pair, long-read, or transcriptome library preparation using techniques available 
at the time that this work was conducted. This resulted in a rather fragmented genome assembly (427,488 contigs 
>500 bp; N50 = 2,167 bp; 1.26 Gbp total assembly size). Assessment of this assembly with BUSCO33 showed that 
it is rather incomplete with only 14.6% of the 978 metazoa_odb9 genes recovered as complete and another 17.9% 
recovered as fragmented. Nevertheless, aside from transcriptome data from Laevipilina hyalina, these represent 
the only available genome data from any monoplacophoran and are thus a valuable resource for testing the phy-
logenetic position of this group.

We curated a dataset of 257 genes totalling 54,596 amino acids in length with data from 49 taxa of which 32 
represented ingroup species (Supplementary Table 1). Care was taken to exclude possible contamination and 
mistranslated sequence regions (see Methods) while minimizing the amount of missing data in the final matrix 
(27.86% missing data). Additionally, only genes with a sequence from L. antarctica were sampled. Phylogenetic 
analyses were conducted using maximum likelihood (ML) in RAxML 834 with the best-fitting model for each 
gene, and in IQ-TREE using the posterior mean site frequency (LG + C60 + G + F) mixture model35–37. A 
Bayesian inference (BI) analysis was conducted in PhyloBayes MPI38 with the CAT-GTR mixture model39.

ML analysis of the partitioned dataset in RAxML (Fig. 1A) recovered Monoplacophora sister to Cephalopoda 
with moderate bootstrap support (bs = 88), consistent with the results of Smith et al.19 and some interpretations 
of the fossil record11. However, the ML analysis in IQ-TREE using the PMSF model (Fig. 1B) and the Bayesian 
inference analysis in PhyloBayes using the CAT-GTR model (Fig. 1C) recovered Monoplacophora sister to the 
rest of Conchifera with a bootstrap support value of 94 and posterior probability of 0.99 respectively, consistent 
with most morphology-based hypotheses of conchiferan relationships11.

To examine support for Monoplacophora sister to Conchifera from individual partitions, we used a 
multi-species coalescent approach in ASTRAL 5.6.140. This analysis also recovered Monoplacophora sister to the 
rest of Conchifera (local posterior probability, lpp = 0.89; Fig. 1D).

Placement of Monoplacophora sister to all other conchiferans had a lower likelihood score than 
Monoplacophora + Cephalopoda in the RAxML analysis and could not be rejected by the Shimodaira-Hasegawa 
(SH) test (p = 0.190). This alternative topology was, however, rejected by the Approximately Unbiased (AU) test 
(p = 0.001). Both tests rejected the Serialia hypothesis (AU test p = 0.001; SH test p = 0).

A clade of all conchiferans except Monoplacophora, as recovered in most of our analyses, was originally 
proposed by morphologists and called Ganglionata (reviewed by Schrödl and Stöger 20145). Despite the name, 
ganglia are neither restricted to Ganglionata nor do all species within Ganglionata show distinct pairs of gan-
glia41–43. Kocot et al.20 curated a morphological character matrix for Mollusca building on that of Haszprunar21 
and conducted ancestral state reconstruction for key molluscan characters (see Methods) under a number of 
different phylogenetic scenarios including Monoplacophora sister to the rest of Conchifera. Our analyses plac-
ing Monoplacophora sister to the rest of Conchifera indicate that the only unambiguously apomorphic trait of 
Ganglionata is the reduction of adult dorsoventral muscle pairs from a hypothesized ancestral set of eight (or 
possibly seven44). Monoplacophorans also differ from other conchiferans with respect to the arrangement and 
structure of mantle folds, anatomy of the shell gland, and structure of the shell23, but whether these are retained 
conchiferan plesiomorphies or monoplacophoran apomorphies is ambiguous.

Relationships among Gastropoda, Bivalvia, and Scaphopoda, a clade of molluscs with relatively thick, 
multi-layered shells27, have been the subject of debate3,5,7,8,31 due to incongruence among recent studies18–20,45,46. 
Whereas our RAxML and ASTRAL analyses found poor support for relationships among these taxa, our 
IQ-TREE and PhyloBayes analyses using mixture models strongly supported Scaphopoda + Gastropoda with 
this clade sister to Bivalvia, consistent with Smith et al.19. Gastropoda is an extremely diverse, morphologically 
disparate, and ecologically variable group of species that inhabit almost all environments on land and in the sea. 
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Scaphopoda, on the other hand, is a much less diverse group of relatively morphologically uniform animals that 
dig in marine sediments and prey upon foraminiferans and other infauna. This pair of unequal sister taxa contra-
dicts the Cyrtosoma concept uniting Gastropoda and Cephalopoda (plus Monoplacophora by the original defi-
nition10; reviewed by Kocot22). Interestingly, a close relationship of Scaphopoda and Gastropoda was proposed 
based on the pronounced dorsoventral axis47 and recent work has confirmed the morphological ventral position 
of the scaphopod foot48. Examination of published molluscan morphological data matrices20,21,49 reveals obvious 
symplesiomorphies shared between these taxa (e.g., external univalved shell), but we find no clear morphological 
synapomorphies for the gastropod-scaphopod clade.

Consistent with other phylogenomic studies18–20,50, all of our analyses strongly support a molluscan dichotomy 
with two major clades: Conchifera and Aculifera51. Within Aculifera, we recovered chitons (Polyplacophora) 
sister to the vermiform, shell-less aplacophorans. Within Aplacophora, we recovered Solenogastres and 
Caudofoveata reciprocally monophyletic. Aculifera contradicts the classical morphology-based Testaria hypoth-
esis5, which places chitons sister to Conchifera and the shell-less worm-like aplacophorans as an early-branching, 
paraphyletic grade. The Testaria hypothesis implies a progressive evolution from a simple unshelled worm-like 
ancestor towards chitons with shell plates and later with the uni- or bivalved conchiferans as the crown-group 
of Mollusca. Our results unequivocally reject this hypothesis (AU test p-value = 4.00E-56; SH test p-value = 0).

In light of support for placement of Monoplacophora sister to the rest of Conchifera and our earlier ancestral 
character state reconstruction analyses based on this phylogenetic hypothesis20, we infer that the last common 
ancestor of extant molluscs was likely a dorsoventrally flattened animal that had a mantle, a dorsal cuticle, a 
broad foot, eight (or seven44) pairs of dorsoventral muscles, a circumpedal or posterior mantle cavity with seri-
ally arranged gills, and a radula as part of a longitudinally arranged, regionalized digestive system. Whether or 
not the last common ancestor of extant molluscs had a single shell, multiple shell plates, or no shell is ambigu-
ous20. Possession of a single shell is clearly plesiomorphic for Conchifera but this was probably also the case in 
Calvapilosa, Maikhanella, and Orthrozanclus, fossil taxa inferred to be stem aculiferans52, suggesting that the last 
common molluscan ancestor may have been single-shelled. Additional studies comparing development, miner-
alogy, and other structural aspects of chiton shells, conchiferan shells, and aculiferan sclerites would be of great 
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Figure 1.  Results of phylogenetic analyses (outgroup taxa not shown). (A) RAxML maximum likelihood (ML) 
topology. Bootstrap support values below 100 shown. (B) IQ-TREE ML topology. Bootstrap support values 
below 100 shown. (C) PhyloBayes Bayesian inference (BI) topology. Posterior probabilities below 1.0 shown. 
(D) ASTRAL tree. Local posterior probabilities below 1.0 shown.
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interest to further address this and other important questions about the origin(s) and homology of molluscan 
biomineralized structures53.

Our molecular clock analysis (Fig. 2; Supplementary Fig. 1; Supplementary Table 3) indicates that the mol-
luscan stem split from trochozoan relatives about 584 MYA (95% highest posterior density [HPD] = 547–623 
MYA), Conchifera diversified 540 MYA (531–548 MYA), and Aculifera diversified 499 MYA (479–520 MYA), 
generally consistent with previous relaxed molecular clocks calculated from multilocus18,45,52,54 and phylogenomic 
data28,55, showing the molluscan stem to be Precambrian in origin. The Ediacaran fossil genus Kimberella has been 
hypothesized to represent a stem-group mollusc by some31,56–58 but the molluscan affinity of Kimberella has been 
criticized by others who instead view it as an early-branching bilaterian32, in part because of its old age (~555 
MYA). Although broad, our and other recent estimates for the divergence of molluscs are at least compatible with 
hypotheses regarding Kimberella as an early offshoot of the molluscan stemline31,45,59. However, if Kimberella was 
indeed a mollusc, it differed from most extant molluscs in its lack of a shell (although sclerites may have been 
present) and, more significantly, a bizarre rake-like mode of feeding unlike that of any modern mollusc32.

Late Precambrian and Cambrian small shelly fossil (SSF) assemblages consist of abundant, diverse, and tiny 
(0.5–5 mm) animals60 in strong contrast to the large-bodied Vendian Kimberella. Our time tree is consistent with 
the prevailing notion that SSFs such as helcionellids and other gastropod- and monoplacophoran-like fossils 
were conchiferan molluscs32, but relatively broad posterior densities preclude confident placement of these fossil 
taxa along any one branch. According to our time tree, molluscan SSFs would have been stem conchiferans, or 
less likely, belonged to the stem of Monoplacophora or the lineage that gave rise to the remaining conchiferans. 
As noted above, at least some fossil aculiferans had a single shell; at least some SSFs could conceivably have been 
aculiferans. Surprisingly, the split of gastropods and scaphopods is rather late according to our molecular clock 
analysis (474 MYA; 95% HDP = 479–520 MYA); this could mean that many Cambrian shells currently regarded 
to be gastropods were actually members of the gastropod-scaphopod stem lineage.

In conclusion, we analysed a high-quality and representative molluscan phylogenomic dataset and 
recovered a robust and intriguing hypothesis on molluscan class-level relationships. Analyses employing 
site-heterogeneous models and a coalescent approach provide support for a dichotomy dividing the molluscs 
into Aculifera and Conchifera, the latter with Monoplacophora sister to the rest of uni- or bivalved molluscs 
and gastropods sister to scaphopods, not bivalves. Our results contradict hypotheses such as Testaria, Serialia, 
and Monoplacophora + Cephalopoda, and have important consequences for reconstructing early molluscan 
evolution.

Methods
Molecular laboratory work.  One specimen of Laevipilina antarctica (ZSM-Mol-20090330, DNABANK-
Mol-MS-016) was collected with the R/V Polarstern in Antarctica between 70°24.00′S, 8°19.72′W and 70°23.86′S, 
8°18.68′W at 597–602 m depth on 12 January 2008. DNA was extracted from the specimen using the NucleoSpin 
Tissue Kit (Macherey-Nagel, Düren, Germany). DNA (10 ng) was used for whole genome amplification using the 
Illustra GenomiPhi V2 DNA Amplification Kit (GE Healthcare Life Sciences, Freiburg, Germany) followed by 
standard ethanol precipitation and re-purification using the Qiagen MinElute system (Qiagen, Hilden, Germany). 
Concentration was determined using a Qubit 2.0 Fluorometer, and 1 μg was used to create a sequencing library 
with the TruSeq DNA Sample Preparation Kit v2 (Illumina, San Diego, CA, USA) with an average insert size of 

Figure 2.  Summary of relaxed molecular clock analysis results. Numbers along y-axis are millions of years 
before present (Ma). Numbers at nodes represent the average age of the split; Error bars at nodes represent the 
height 95% HPD (highest posterior density). A detailed version of this tree is presented in Supplementary Fig. 1 
and the raw data and uncollapsed tree are available via FigShare (see Data Availability section).
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approximately 250 bp. Two lanes of 101 bp paired-end-reads were sequenced on the Illumina HiSeq 2000 system 
yielding about 90 Gbp. Raw reads were filtered for quality, PCR duplicates, and adapter sequences and corrected 
using SOAPfilter_v2.0 (https://github.com/tanghaibao/jcvi-bin/blob/master/SOAP/SOAPfilter_v2.0) using 
default settings.

Genome assembly and annotation.  Reads retained by SOAPfilter_v2.0 were assembled de novo using 
SOAPdenovo2_v2.0461. Sparse_pregraph was used to construct the K-mer graph using the following settings: 
-K 31 -g 15 -z 2000000000 -d 1 -e 1 -r 0 -p 28. Contigs were computed using kmer iterations up to K = 63 (-M 
3 -m 63 -p 30). The remapping step of SOAPdenovo was carried out using standard settings and the scaffolding 
step was used with parameters: -F -G 200 -p 28. Finally, additional gaps were filled using SOAP Gapcloser v1.12. 
Genescan62 was used to generate gene predictions resulting in 83 Mb of protein-coding sequences, which were 
subsequently used for phylogenomic analyses.

Taxon sampling and data preparation for phylogenomic analysis.  Taxon sampling (Supplementary 
Table 1) was selected to broadly span the diversity of Mollusca including at least two representatives of each major 
lineage and at least two representatives of each phylum considered a candidate for the sister taxon of Mollusca63. 
Publicly available protein sequences from complete genomes and assembled transcriptomes were downloaded 
when available. Dataset assembly and processing built on our established and routinely used bioinformatic pipe-
line30,64–67 with a number of modifications to help reduce possible exogenous contamination and low quality data 
(e.g., incorrectly translated gene predictions from Genescan; see below). Unassembled publicly available tran-
scriptome data were digitally normalized and assembled using Trinity68. Transcriptome assemblies were trans-
lated with TransDecoder (https://sourceforge.net/p/transdecoder/), keeping only amino acid (AA) sequences 
longer than 100 AAs.

Orthology inference.  For orthology inference, we employed HaMStR 1369, which infers orthology based 
on predefined sets of orthologous groups (OGs). We employed the Trochozoa custom core-ortholog set of Kocot 
et al.30. Translated transcripts for all taxa were then searched against the 2,259 Trochozoa pHMMs. Sequences 
matching an OG’s pHMM were then compared to the proteome of Lottia gigantea using BLASTP70 with the -strict 
option. If the Lottia amino acid sequence contributing to the pHMM was the best BLASTP hit in each of these 
back-BLASTs, the sequence was then assigned to that OG.

Dataset processing.  Sequences shorter than 100 amino acids were deleted and OGs sampled for fewer 
than 35 taxa were discarded. Redundant identical sequences were removed with UniqHaplo (http://raven.iab.
alaska.edu/~ntakebay/). In cases where one of the first or last 20 characters of an amino acid sequence was an 
X, all characters between the X and that end of the sequence were deleted and treated as missing data. Each 
OG was then aligned with MAFFT71 (mafft–auto–localpair–maxiterate 1000). Alignments were then trimmed 
with Aliscore72 and Alicut73 to remove ambiguously aligned regions. Next, a consensus sequence was inferred 
for each alignment using the EMBOSS program infoalign74. For each sequence in each single-gene amino acid 
alignment, the percentage of positions of that sequence that differed from the consensus of the alignment were 
calculated using the infoalign’s “change” calculation. Any sequence with a “change” value greater than 75 was 
deleted. Subsequently, a custom script (AlignmentCompare; https://github.com/kmkocot/basal_metazoan_phy-
logenomics_scripts_01-2015) was used to delete any likely mistranslated sequence regions of 20 or fewer amino 
acids in length surrounded by ten or more gaps on either side. Next, alignment columns with fewer than four 
non-gap characters were deleted. At this point, alignments shorter than 50 amino acids in length were discarded. 
Lastly, sequences that did not overlap with all other sequences in the alignment by at least 20 amino acids were 
deleted, starting with the shortest sequences not meeting this criterion.

In some cases, a taxon was represented in an OG by two or more sequences (splice variants, lineage-specific 
gene duplications [=inparalogs], overlooked paralogs, or exogenous contamination). In order to select the best 
sequence for each taxon and exclude any paralogs or exogenous contamination, we built trees in FastTree 275 
and used PhyloTreePruner76 to select the best sequence for each taxon. OGs sampled for fewer than 35 taxa and 
OGs lacking a sequence from Laevipilina antarctica were discarded. The remaining alignments were manually 
screened to identify and remove putative contamination or mistranslated sequences. Sequences that were obvi-
ously very different from the majority of the sequences in the alignment were blasted against NCBI NR using 
BLASTP and sequences that did not return an animal as the top hit were discarded. Finally, remaining OGs were 
then concatenated using FASconCAT77.

Phylogenetic analyses.  Maximum likelihood analyses were conducted in RAxML 8.2.434 and IQ-TREE 
1.5.535. For the RAxML analysis, matrices were partitioned by gene with the PROTGAMMAAUTO model (the 
best-fitting model for each gene) used for all partitions. The tree with the best likelihood score after 10 random 
addition sequence replicates was retained and topological robustness (i.e., nodal support) was assessed with 100 
replicates of fast bootstrapping (the -f a command line option was used). For the IQ-TREE analysis, we used 
the posterior mean site frequency (PMSF) model37, which is an approximation to full empirical profile mixture 
models for ML analysis. Specifically, the LG + C60 + G + F model was specified. Because this approach requires 
a guide tree to infer the site frequency model, we used the previously generated RAxML tree. Nodal support 
was assessed with 1000 replicates of ultrafast bootstrapping (-bb 1000). Bayesian Inference analysis was con-
ducted with PhyloBayes 4.1b78 using the site-heterogeneous CAT-GTR model. Two chains were run for 14,143 
and 13,400 generations, respectively with the first 2,000 trees from each chain discarded as burn-in. A bpcomp 
maxdiff value of 0.28 indicated that the chains had converged.

To examine support for key hypotheses from individual partitions, we made trees for each gene in RAxML 
using the best-fitting model, used these as guide trees for IQ-TREE analyses with the LG + C20 + G + F model, 
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and inferred a supertree using a multi-species coalescent model in ASTRAL 5.6.140. Weakly-supported nodes 
(bs < 50) were collapsed as advocated by Zhang et al.40. Hypothesis testing using the Approximately Unbiased 
test79 and the Shimodaira Hasegawa test80 was conducted using RAxML 8.2.434 and CONSEL81 based on the 
RAxML analysis.

Divergence time estimates (Supplementary Table 3) were obtained in BEAST2 v.2.4.682 on the CIPRES Science 
Gateway (https://www.phylo.org/) with a log-normal relaxed clock and the WAG model of substitution. The 
topology of the tree was manually constrained a priori by defining the major splits of the BI tree analysed herein. 
Fossil calibrations83–89 are presented in Supplementary Table 4. The analysis was executed for 180 million gener-
ations sampling a tree every 1,000 generations. After discarding the first 3,600 trees as burn-in, 14,401 trees were 
analysed with TreeAnnotator 2.4.5 to build the summary tree.

Ancestral character state reconstruction.  Ancestral character state reconstruction was performed pre-
viously by Kocot et al.20 using an updated and modified version of the morphological matrix of Haszprunar21. 
Because this analysis was already performed in light of numerous alternative hypotheses of molluscan class-level 
phylogeny including Monoplacophora sister to the remainder of Conchifera, it was not re-done here. The data 
matrix analysed is available via FigShare at https://figshare.com/s/934e61a053aacd8d37c1.

Data availability
Illumina paired-end genomic data for L. antarctica were submitted to NCBI SRA under accession number 
SRR6506080. The assembled L. antarctica genome, assembly statistics, Genescan output, molecular and 
morphological data matrices analysed, and other data files associated with results presented herein were 
submitted to FigShare: https://figshare.com/s/934e61a053aacd8d37c1. Sources of publicly available datasets used 
herein are presented in Supplementary Table 1.
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