31 research outputs found

    Genetic factors and insulin secretion: gene variants in the IGF genes

    Get PDF
    IGFs are important regulators of pancreatic beta-cell development, growth, and maintenance. Mutations in the IGF genes have been found to be associated with type 2 diabetes, myocardial infarction, birth weight, and obesity. These associations could result from changes in insulin secretion. We have analyzed glucose-stimulated insulin secretion using hyperglycemic clamps in carriers of a CA repeat in the IGF-I promoter and an ApaI polymorphism in the IGF-II gene. Normal and impaired glucose-tolerant subjects (n = 237) were independently recruited from three different populations in the Netherlands and Germany to allow independent replication of associations. Both first- and second-phase insulin secretion were not significantly different between the various IGF-I or IGF-II genotypes. Remarkably, noncarriers of the IGF-I CA repeat allele had both a reduced insulin sensitivity index (ISI) and disposition index (DI), suggesting an altered balance between insulin secretion and insulin action. Other diabetes-related parameters were not significantly different for both the IGF-I and IGF-II gene variant. We conclude that gene variants in the IGF-I and IGF-II genes are not associated with detectable variations in glucose-stimulated insulin secretion in these three independent populations. Further studies are needed to examine the exact contributions of the IGF-I CA repeat alleles to variations in ISI and DI

    Common Variants in the Type 2 Diabetes KCNQ1 Gene Are Associated with Impairments in Insulin Secretion During Hyperglycaemic Glucose Clamp

    Get PDF
    Background: Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1 gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2 diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of developing complications in type 2 diabetes patients. Methodology: The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes patients and 5285 healthy controls from the Netherlands. Data on macrovascular complications, nephropathy and retinopathy were available in a subset of diabetic patients. Association between genotype and insulin secretion/action was assessed in the additional sample of 335 individuals who underwent a hyperglycaemic clamp. Principal Findings: We found that all the genotyped KCNQ1 variants were significantly associated with type 2 diabetes in our Dutch population, and the association of rs151290 was the strongest (OR 1.20, 95% CI 1.07-1.35, p = 0.002). The risk C-allele of rs151290 was nominally associated with reduced first-phase glucose-stimulated insulin secretion, while the non-risk T-allele of rs2237892 was significantly correlated with increased second-phase glucose-stimulated insulin secretion (p = 0.025 and 0.0016, respectively). In addition, the risk C-allele of rs2237892 was associated with higher LDL and total cholesterol levels (p = 0.015 and 0.003, respectively). We found no evidence for an association of KCNQ1 with diabetic complications. Conclusions: Common variants in the KCNQ1 gene are associated with type 2 diabetes in a Dutch population, which can be explained at least in part by an effect on insulin secretion. Furthermore, our data suggest that KCNQ1 is also associated with lipid metabolism

    Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Excessive accumulation of body fat, in particular in the visceral fat depot, is a major risk factor to develop a variety of diseases such as type 2 diabetes. The mechanisms underlying the increased risk of obese individuals to develop co-morbid diseases are largely unclear.</p> <p>We aimed to identify genes expressed in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) that are related to blood parameters involved in obesity co-morbidity, such as plasma lipid and glucose levels, and to compare gene expression between the fat depots.</p> <p>Methods</p> <p>Whole-transcriptome SAT and VAT gene expression levels were determined in 75 individuals with a BMI >35 kg/m<sup>2</sup>. Modules of co-expressed genes likely to be functionally related were identified and correlated with BMI, plasma levels of glucose, insulin, HbA<sub>1c</sub>, triglycerides, non-esterified fatty acids, ALAT, ASAT, C-reactive protein, and LDL- and HDL cholesterol.</p> <p>Results</p> <p>Of the approximately 70 modules identified in SAT and VAT, three SAT modules were inversely associated with plasma HDL-cholesterol levels, and a fourth module was inversely associated with both plasma glucose and plasma triglyceride levels (p < 5.33 × 10<sup>-5</sup>). These modules were markedly enriched in immune and metabolic genes. In VAT, one module was associated with both BMI and insulin, and another with plasma glucose (p < 4.64 × 10<sup>-5</sup>). This module was also enriched in inflammatory genes and showed a marked overlap in gene content with the SAT modules related to HDL. Several genes differentially expressed in SAT and VAT were identified.</p> <p>Conclusions</p> <p>In obese subjects, groups of co-expressed genes were identified that correlated with lipid and glucose metabolism parameters; they were enriched with immune genes. A number of genes were identified of which the expression in SAT correlated with plasma HDL cholesterol, while their expression in VAT correlated with plasma glucose. This underlines both the singular importance of these genes for lipid and glucose metabolism and the specific roles of these two fat depots in this respect.</p

    Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value &lt; 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p &lt; 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    A genome-wide association search for type 2 diabetes genes in African Americans.

    Get PDF
    African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations

    Growth hormone-, alpha-subunit and thyrotrophin-cosecreting pituitary adenoma in familial setting of pituitary tumour

    No full text
    A patient with acromegaly and hyperthyroidism due to a growth hormone-, thyrotrophin- and alpha-subunit-secreting pituitary adenoma is described. His deceased father had suffered from a pituitary tumour, and was likely to have had acromegaly as well. Plasma growth hormone and insulin-like growth factor I concentrations were elevated, with levels between 10 and 20 mu g/l and 4.4 and 7.3 kU/l, respectively. In spite of hyperthyroidism (free thyroxine, 45 pmol/l; free triiodothyronine, 24 pmol/l), plasma thyrotrophin remained at 2.8 mU/l without any response to thyrotrophin-releasing hormone and could not be suppressed with exogenous administration of triiodothyronine. Plasma alpha-subunits were raised to 3.3-3.7 U/l (normal 0.4-1.1 U/l). Pathological examination of the surgically removed tumour showed a pituitary adenoma with the immunohistochemical presence of growth hormone, thyrotrophin, prolactin and alpha-subunit. This is the first report of a growth hormone-, thyrotrophin- and alpha-subunit-producing pituitary adenoma, which occurred in a familial setting
    corecore