26 research outputs found

    Parasite-driven replacement of a sexual by a closely related asexual taxon in nature

    Get PDF
    Asexual species are thought to suffer more from coevolving parasites than related sexuals. Yet a variety of studies do not find the patterns predicted by theory. Here, to shine light on this conundrum, we investigate one such case of an asexual advantage in the presence of parasites. We follow the frequency dynamics of sexual and asexualDaphnia pulexin a natural pond that was initially dominated by sexuals. Coinciding with an epidemic of a microsporidian parasite infecting both sexuals and asexuals, the pond was rapidly taken over by the initially rare asexuals. With experiments comparing multiple sexual and asexual clones from across the local metapopulation, we confirm that asexuals are less susceptible and also suffer less from the parasite once infected. These results are consistent with the parasite-driven, ecological replacement of dominant sexuals by closely related, but more resistant asexuals, ultimately leading to the extinction of the formerly superior sexual competitor. Our study is one of the clearest examples from nature, backed up by experimental verification, showing a parasite-mediated reversal of competition dynamics. The experiments show that, across the metapopulation, asexuals have an advantage in the presence of parasites. In this metapopulation, asexuals are relatively rare, likely due to their recent invasion. While we cannot rule out other reasons for the observed patterns, the results are consistent with a temporary parasite-mediated advantage of asexuals due to the fact that they are rare, which is an underappreciated aspect of the Red Queen Hypothesis.Peer reviewe

    Reduced lifespan and increased ageing driven by genetic drift in small populations

    Get PDF
    Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship between lifespan and genetic diversity predicted by this model indeed exists among populations of Daphnia magna, and that ageing is accelerated in small populations. Additional results suggest that this is due to increased drift in small populations rather than adaptation to environments favoring faster life histories. First, the correlation between genetic diversity and lifespan remains significant after statistical correction for potential environmental covariates. Second, no trade-offs are observed; rather, all investigated traits show clear signs of increased genetic load in the small populations. Third, hybrid vigor with respect to lifespan is observed in crosses between small but not between large populations. Together, these results suggest that the evolution of lifespan and ageing can be strongly affected by genetic drift, especially in small populations, and that variation in lifespan and ageing may often be nonadaptive, due to a strong contribution from mutation accumulation

    Scalability of Non-intrusive Load Monitoring for Shipboard Applications

    Get PDF
    The non-intrusive load monitor has been demonstrated as an effective tool for evaluating and monitoring shipboard electro-mechanical systems through analysis of electrical power data. A key advantage of the non-intrusive approach is the ability to reduce sensor count by monitoring collections of loads. This paper reviews trade-offs that affect the likely performance of the NILM in a real world environment.Massachusetts Institute of Technology. Sea Grant College Program; Grainger Foundation; National Science Foundation (U.S.); United States. National Aeronautics and Space Administration; United States. Coast Guard; United States. Office of Naval Research. Electric Ship Research and Development Consortium; NAVSEA; University of North Carolin

    Priorities for research on neuromodulatory subcortical systems in Alzheimer's disease: Position paper from the NSS PIA of ISTAART

    Get PDF
    The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies

    Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes

    Get PDF
    The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described

    Data from: Genetic load, inbreeding depression and hybrid vigor covary with population size: an empirical evaluation of theoretical predictions

    No full text
    Reduced population size is thought to have strong consequences for evolutionary processes as it enhances the strength of genetic drift. In its interaction with selection, this is predicted to increase the genetic load, reduce inbreeding depression, and increase hybrid vigour, and in turn affect phenotypic evolution. Several of these predictions have been tested, but comprehensive studies controlling for confounding factors are scarce. Here we show that populations of Daphnia magna, which vary strongly in genetic diversity, also differ in genetic load, inbreeding depression, and hybrid vigor in a way that strongly supports theoretical predictions: Inbreeding depression is positively correlated with genetic diversity (a proxy for Ne), and genetic load and hybrid vigour are negatively correlated with genetic diversity. These patterns remain significant after accounting for potential confounding factors and indicate that, in small populations, a large proportion of the segregation load is converted into fixed load. Overall, the results suggest that the nature of genetic variation for fitness-related traits differs strongly between large and small populations. This has large consequences for evolutionary processes in natural populations, such as selection on dispersal, breeding systems, ageing, and local adaptation

    Data from: Reduced lifespan and increased ageing driven by genetic drift in small populations

    No full text
    Explaining the strong variation in lifespan among organisms remains a major challenge in evolutionary biology. Whereas previous work has concentrated mainly on differences in selection regimes and selection pressures, we hypothesize that differences in genetic drift may explain some of this variation. We develop a model to formalize this idea and show that the strong positive relationship between lifespan and genetic diversity predicted by this model indeed exists among populations of Daphnia magna, and that ageing is accelerated in small populations. Additional results suggest that this is due to increased drift in small populations rather than adaptation to environments favoring faster life histories: First, the correlation between genetic diversity and lifespan remains significant after statistical correction for potential environmental covariates. Second, no trade-offs are observed; rather, all investigated traits show clear signs of increased genetic load in the small populations. Third, hybrid vigor with respect to lifespan is observed in crosses between small but not between large populations. Together, these results suggest that the evolution of lifespan and ageing can be strongly affected by genetic drift, especially in small populations, and that variation in lifespan and ageing may often be non-adaptive, due to a strong contribution from mutation accumulation to this variation

    age2

    No full text
    results of second life table experimen

    age3

    No full text
    results of third life table experimen
    corecore