1,817 research outputs found

    A double shunt technique for the prevention of ischaemia of a congenital, solitary, pelvic kidney during abdominal aortic aneurysm repair: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Congenital solitary pelvic kidney is a rare condition, and its association with an abdominal aortic aneurysm is even more unusual. To the best of our knowledge, only two such cases have been reported in the literature to date.</p> <p>Case presentation</p> <p>We report the case of a 59-year-old Caucasian man with a congenital solitary pelvic kidney, who was found to have an abdominal aortic aneurysm 83 mm in diameter. Abdominal computed tomography angiography clearly identified two renal arteries, one originating from the aortic bifurcation. and the other from the proximal portion of the right common iliac artery. At surgery, renal ischaemia was prevented by introduction of an axillofemoral shunt (consisting of two femoral cannulas and a vent tube of extracorporeal circulation) from the right axillary to the right femoral artery, and a second Argyle shunt from the right common iliac artery to the origin of the left renal artery. A 20 mm Dacron tube graft was then implanted. Our patient's postoperative renal function was normal.</p> <p>Conclusion</p> <p>The renal preservation double shunt technique used in this case seems to be effective during abdominal aortic aneurysm repair.</p

    Switching of magnetization by non-linear resonance studied in single nanoparticles

    Full text link
    Magnetization reversal in magnetic particles is one of the fundamental issues in magnetic data storage. Technological improvements require the understanding of dynamical magnetization reversal processes at nanosecond time scales. New strategies are needed to overcome current limitations. For example, the problem of thermal stability of the magnetization state (superparamagnetic limit) can be pushed down to smaller particle sizes by increasing the magnetic anisotropy. High fields are then needed to reverse the magnetization that are difficult to achieve in current devices. Here we propose a new method to overcome this limitation. A constant applied field, well below the switching field, combined with a radio-frequency (RF) field pulse can reverse the magnetization of a nanoparticle. The efficiency of this method is demonstrated on a 20 nm cobalt particle by using the micro-SQUID technique. Other applications of this method might be nucleation or depinning of domain walls.Comment: 11 pages, 5 figure

    Systematically missing confounders in individual participant data meta-analysis of observational cohort studies.

    Get PDF
    One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within-cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154,012 participants in 31 cohort

    Macroeconomic impact of stranded fossil-fuel assets

    Get PDF
    Several major economies rely heavily on fossil-fuel production and exports, yet current low-carbon technology diffusion, energy efficiency and climate policy may be substantially reducing global demand for fossil fuels.1-4 This trend is inconsistent with observed investment in new fossil-fuel ventures1,2, which could become stranded as a result. Here we use an integrated global economy environment simulation model to study the macroeconomic impact of stranded fossil-fuel assets (SFFA). Our analysis suggests that part of the SFFA would occur as a result of an already ongoing technological trajectory, irrespective of whether new climate policies are adopted or not; the loss would be amplified if new climate policies to reach the 2°C target are adopted and/or if low-cost producers (some OPEC countries) maintain their level of production (‘sell-out’) despite declining demand; the magnitude of the loss from SFFA may amount to a discounted global wealth loss of $1-4tn; and there are clear distributional impacts, with winners (e.g. net importers such as China or the EU) and losers (e.g. Russia, the US or Canada, which could see their fossil-fuel industries nearly shut down), although the two effects would largely offset each other at the level of aggregate global GDP.The authors acknowledge C-EERNG and Cambridge Econometrics for support, and funding from EPSRC (JFM, fellowship no. EP/ K007254/1); the Newton Fund (JFM, PS, JV, EPSRC grant no EP/N002504/1 and ESRC grant no ES/N013174/1), NERC (NRE, PH, HP, grant no NE/P015093/1), CONICYT (PS), the Philomathia Foundation (JV), the Cambridge Humanities Research Grants Scheme (JV), and Horizon 2020 (HP, JFM; Sim4Nexus project)

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron

    Get PDF
    We study the underlying event in proton-antiproton collisions by examining the behavior of charged particles (transverse momentum pT > 0.5 GeV/c, pseudorapidity |\eta| < 1) produced in association with large transverse momentum jets (~2.2 fb-1) or with Drell-Yan lepton-pairs (~2.7 fb-1) in the Z-boson mass region (70 < M(pair) < 110 GeV/c2) as measured by CDF at 1.96 TeV center-of-mass energy. We use the direction of the lepton-pair (in Drell-Yan production) or the leading jet (in high-pT jet production) in each event to define three regions of \eta-\phi space; toward, away, and transverse, where \phi is the azimuthal scattering angle. For Drell-Yan production (excluding the leptons) both the toward and transverse regions are very sensitive to the underlying event. In high-pT jet production the transverse region is very sensitive to the underlying event and is separated into a MAX and MIN transverse region, which helps separate the hard component (initial and final-state radiation) from the beam-beam remnant and multiple parton interaction components of the scattering. The data are corrected to the particle level to remove detector effects and are then compared with several QCD Monte-Carlo models. The goal of this analysis is to provide data that can be used to test and improve the QCD Monte-Carlo models of the underlying event that are used to simulate hadron-hadron collisions.Comment: Submitted to Phys.Rev.

    Stability of domain structures in multi-domain proteins

    Get PDF
    Multi-domain proteins have many advantages with respect to stability and folding inside cells. Here we attempt to understand the intricate relationship between the domain-domain interactions and the stability of domains in isolation. We provide quantitative treatment and proof for prevailing intuitive ideas on the strategies employed by nature to stabilize otherwise unstable domains. We find that domains incapable of independent stability are stabilized by favourable interactions with tethered domains in the multi-domain context. Stability of such folds to exist independently is optimized by evolution. Specific residue mutations in the sites equivalent to inter-domain interface enhance the overall solvation, thereby stabilizing these domain folds independently. A few naturally occurring variants at these sites alter communication between domains and affect stability leading to disease manifestation. Our analysis provides safe guidelines for mutagenesis which have attractive applications in obtaining stable fragments and domain constructs essential for structural studies by crystallography and NMR

    Measurement of the W+WW^+W^- Production Cross Section and Search for Anomalous WWγWW\gamma and WWZWWZ Couplings in ppˉp \bar p Collisions at s=1.96\sqrt{s} = 1.96 TeV

    Get PDF
    This Letter describes the current most precise measurement of the WW boson pair production cross section and most sensitive test of anomalous WWγWW\gamma and WWZWWZ couplings in ppˉp \bar p collisions at a center-of-mass energy of 1.96 TeV. The WWWW candidates are reconstructed from decays containing two charged leptons and two neutrinos, where the charged leptons are either electrons or muons. Using data collected by the CDF II detector from 3.6 fb1^{-1} of integrated luminosity, a total of 654 candidate events are observed with an expected background contribution of 320±47320 \pm 47 events. The measured total cross section is σ(ppˉW+W+X)=12.1±0.9(stat)1.4+1.6(syst)\sigma (p \bar p \to W^+ W^- + X) = 12.1 \pm 0.9 \textrm{(stat)} ^{+1.6}_{-1.4} \textrm{(syst)} pb, which is in good agreement with the standard model prediction. The same data sample is used to place constraints on anomalous WWγWW\gamma and WWZWWZ couplings.Comment: submitted to Phys. Rev. Let
    corecore