151 research outputs found

    Axons Amplify Somatic Incomplete Spikes into Uniform Amplitudes in Mouse Cortical Pyramidal Neurons

    Get PDF
    BACKGROUND: Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels. CONCLUSION/SIGNIFICANCE: An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues

    The basal epithelial marker P-cadherin associates with breast cancer cell populations harboring a glycolytic and acid-resistant phenotype

    Get PDF
    "BMC Cancer 2014 14:734"BACKGROUND: Cancer stem cells are hypoxia-resistant and present a preponderant glycolytic metabolism. These characteristics are also found in basal-like breast carcinomas (BLBC), which show increased expression of cancer stem cell markers.Recently, we demonstrated that P-cadherin, a biomarker of BLBC and a poor prognostic factor in this disease, mediates stem-like properties and resistance to radiation therapy. Thus, the aim of the present study was to evaluate if P-cadherin expression was associated to breast cancer cell populations with an adapted phenotype to hypoxia. METHODS: Immunohistochemistry was performed to address the expression of P-cadherin, hypoxic, glycolytic and acid-resistance biomarkers in primary human breast carcinomas. In vitro studies were performed using basal-like breast cancer cell lines. qRT-PCR, FACS analysis, western blotting and confocal microscopy were used to assess the expression of P-cadherin after HIF-1a stabilization, achieved by CoCl2 treatment. siRNA-mediated knockdown was used to silence the expression of several targets and qRT-PCR was employed to evaluate the effects of P-cadherin on HIF-1a signaling. P-cadherin high and low breast cancer cell populations were sorted by FACS and levels of GLUT1 and CAIX were assessed by FACS and western blotting. Mammosphere forming efficiency was used to determine the stem cell activity after specific siRNA-mediated knockdown, further confirmed by western blotting. RESULTS: We demonstrated that P-cadherin overexpression was significantly associated with the expression of HIF-1a, GLUT1, CAIX, MCT1 and CD147 in human breast carcinomas. In vitro, we showed that HIF-1a stabilization was accompanied by increased membrane expression of P-cadherin and that P-cadherin silencing led to a decrease of the mRNA levels of GLUT1 and CAIX. We also found that the cell fractions harboring high levels of P-cadherin were the same exhibiting more GLUT1 and CAIX expression. Finally, we showed that P-cadherin silencing significantly decreases the mammosphere forming efficiency in the same range as the silencing of HIF-1a, CAIX or GLUT1, validating that all these markers are being expressed by the same breast cancer stem cell population. CONCLUSIONS: Our results establish a link between aberrant P-cadherin expression and hypoxic, glycolytic and acid-resistant breast cancer cells, suggesting a possible role for this marker in cancer cell metabolismo.This work was funded by FEDER funds through the COMPETE Program (Programa Operacional Factores de Competitividade) and by national funds through FCT (Portuguese Foundation for Science and Technology, Portugal), mainly in the context of the scientific project PTDC/SAU-GMG/120049/2010-FCOMP-01-0124-FEDER-021209, and partially by PTDC/SAU-FCF/104347/2008. FCT funded the research grants of BS (SFRH/BD/69353/2010), ASR (SFRH/BPD/75705/2011), ARN (grant from the project PTDC/SAU-GMG/120049/2010), CP (SFRH/BPD/69479/2010), AV (SFRH/BPD/90303/2012), as well as JP, with Programa Ciencia 2007 (Contratacao de Doutorados para o SCTN - financiamento pelo POPH - QREN - Tipologia 4.2 - Promocao do Emprego Cientifico, comparticipado pelo Fundo Social Europeu e por fundos nacionais do MCTES) and Programa IFCT (FCT Investigator). IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology and Higher Education and is partially supported by FCT

    Inter-organizational governance and trilateral trust building: a case study of crowdsourcing-based open innovation in China

    Get PDF
    In a case study of a Chinese crowdsourcing intermediary, we explore the impact of inter-organizational governance on trilateral trust-building. We show that formal control and relational governance mechanisms are essential for swift and knowledge-based trust in R&D crowdsourcing. The case also indicates that Chinese businesses continue to use guanxi (informal personal connections) as a relational and contingent mechanism to maintain affect-based trust, but guanxi is shown to inhibit the growth of Internet-based crowdsourcing for open innovation in China

    Brief wide-field photostimuli evoke and modulate oscillatory reverberating activity in cortical networks

    Get PDF
    Cell assemblies manipulation by optogenetics is pivotal to advance neuroscience and neuroengineering. In in vivo applications, photostimulation often broadly addresses a population of cells simultaneously, leading to feed-forward and to reverberating responses in recurrent microcircuits. The former arise from direct activation of targets downstream, and are straightforward to interpret. The latter are consequence of feedback connectivity and may reflect a variety of time-scales and complex dynamical properties. We investigated wide-field photostimulation in cortical networks in vitro, employing substrate-integrated microelectrode arrays and long-term cultured neuronal networks. We characterized the effect of brief light pulses, while restricting the expression of channelrhodopsin to principal neurons. We evoked robust reverberating responses, oscillating in the physiological gamma frequency range, and found that such a frequency could be reliably manipulated varying the light pulse duration, not its intensity. By pharmacology, mathematical modelling, and intracellular recordings, we conclude that gamma oscillations likely emerge as in vivo from the excitatory-inhibitory interplay and that, unexpectedly, the light stimuli transiently facilitate excitatory synaptic transmission. Of relevance for in vitro models of (dys)functional cortical microcircuitry and in vivo manipulations of cell assemblies, we give for the first time evidence of network-level consequences of the alteration of synaptic physiology by optogenetics

    Gender Nonconformity During Adolescence:Links with Stigma, Sexual Minority Status, and Psychosocial Outcomes

    Get PDF
    Both gender nonconformity and sexual minority status during adolescence are associated with elevated levels of victimization and harassment, experiences that have serious consequences for adolescent psychosocial outcomes. While gender nonconformity and sexual minority status reflect separate constructs, they are associated because (1) sexual minority youth report higher levels of gender nonconformity and (2) gender nonconformity is frequently used to attribute sexual minority status by others. Following from classic stigma theory, the current chapter focuses on the role of gender nonconformity in explaining variation in social exclusion and victimization among both sexual minority and sexual majority youth. Of particular interest is the potential for gender nonconformity to mediate or moderate the association between sexual minority status and individual mental health and wellbeing outcomes. Gender differences will also be discussed, focusing on differences between girls and boys in the links between sexual minority status, gender nonconformity, experiences of victimization, and negative psychosocial outcomes. Additionally, the emerging literature on conceptualizing gender nonconformity among trans and non-binary youth will be addressed. Finally, the current chapter will finish with a discussion of how and why gender nonconformity must be taken into consideration in the development of programs aimed at reducing homophobia among adolescent populations

    Search for Standard Model Higgs Boson Production in Association with a W Boson using a Neural Network

    Get PDF
    Submitted to Phys. Rev. DWe present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9 inverse fb. We select events consistent with a signature of a single charged lepton, missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to $150 GeV/c^2, respectively.We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (pp̅ →W±H→ℓνbb̅ ) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector that correspond to an integrated luminosity of approximately 1.9  fb-1. We select events consistent with a signature of a single charged lepton (e±/μ±), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method, a jet probability tagging method, and a neural network filter. We use kinematic information in an artificial neural network to improve discrimination between signal and background compared to previous analyses. The observed number of events and the neural network output distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching fraction ranging from 1.2 to 1.1 pb or 7.5 to 102 times the standard model expectation for Higgs boson masses from 110 to 150  GeV/c2, respectively.Peer reviewe

    Observation of exclusive charmonium production and gamma+gamma to mu+mu- in p+pbar collisions at sqrt{s} = 1.96 TeV

    Get PDF
    7 pages, 3 figures, 1 table. Version accepted for Phys.Rev.Lett. Phys.Rev.Lett. (to be published)We have observed the reactions p+pbar --> p+X+pbar, with X being a centrally produced J/psi, psi(2S) or chi_c0, and gamma+gamma --> mu+mu-, in proton- antiproton collisions at sqrt{s} = 1.96 TeV using the Run II Collider Detector at Fermilab. The event signature requires two oppositely charged muons, each with pseudorapidity |eta| mu+mu-. Events with a J/psi and an associated photon candidate are consistent with exclusive chi_c0 production through double pomeron exchange. The exclusive vector meson production is as expected for elastic photo- production, gamma+p --> J/psi(psi(2S)) + p, which is observed here for the first time in hadron-hadron collisions. The cross sections ds/dy(y=0) for p + pbar --> p + X + pbar with X = J/psi, psi(2S) orchi_c0 are 3.92+/-0.62 nb, 0.53+/-0.14 nb, and 75+/-14 nb respectively. The cross section for the continuum, with |eta(mu+/-)|In CDF we have observed the reactions p+p̅ →p+X+p̅ , with X being a centrally produced J/ψ, ψ(2S), or χc0, and γγ→μ+μ- in pp̅ collisions at √s=1.96  TeV. The event signature requires two oppositely charged central muons, and either no other particles or one additional photon detected. Exclusive vector meson production is as expected for elastic photoproduction, γ+p→J/ψ(ψ(2S))+p, observed here for the first time in hadron-hadron collisions. We also observe exclusive χc0→J/ψ+γ. The cross sections dσ/dy|y=0 for J/ψ, ψ(2S), and χc0 are 3.92±0.25(stat)±0.52(syst)  nb, 0.53±0.09(stat)±0.10(syst)  nb, and 76±10(stat)±10(syst)  nb, respectively, and the continuum is consistent with QED. We put an upper limit on the cross section for Odderon exchange in exclusive J/ψ production.Peer reviewe

    Search for the Production of Narrow tb Resonances in 1.9 fb-1 of ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We present new limits on resonant tb production in proton-antiproton collisions at 1.96 TeV, using 1.9 fb^-1 of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb production as modeled by W'->tb. We set a new limit on a right-handed W' with standard model-like coupling, excluding any mass below 800 GeV at 95% C.L. The cross-section for any narrow, resonant tb production between 750 and 950 GeV is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W' coupling strength versus W' mass over the range 300 to 950 GeV.We present new limits on resonant tb̅ production in pp̅ collisions at √s=1.96  TeV, using 1.9  fb-1 of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate tb̅ mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb̅ production as modeled by W′→tb̅ . We set a new limit on a right-handed W′ with standard model-like coupling, excluding any mass below 800  GeV/c2 at 95% C.L. The cross section for any narrow, resonant tb̅ production between 750 and 950  GeV/c2 is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W′ coupling strength versus W′ mass over the range 300–950  GeV/c2.Peer reviewe
    • …
    corecore