139 research outputs found

    How to extract reliable core-volume fractions from core-shell polycrystalline microstructures using cross sectional TEM micrographs

    Get PDF
    A reliable method of extracting core-volume fraction from TEM micrographs of core-shell polycrystalline microstructures is presented. Three commonly used averaging methods based on a simple spherical model are shown to consistently underestimate the core-volume fraction due to the interpretation of a 3D structure from a 2D slice. The same trend is also revealed using Voronoi tessellated structures to mimic polycrystalline ceramics. In some cases the underestimate is less than half the true core-volume fraction. We show that using a new maximum core-volume fraction methodology can improve the extracted value to a consistent error of less than 5%. This approach uses a value taken from the largest core-volume fraction measured from 10 grains that exhibit a core-shell microstructure. This provides increasing accuracy and improvements in the confidence of the measurement when extracting core-volume fractions of polycrystalline ceramics from 2D TEM micrographs

    Positive and Negative Regulation of Gli Activity by Kif7 in the Zebrafish Embryo

    Get PDF
    Loss of function mutations of Kif7, the vertebrate orthologue of the Drosophila Hh pathway component Costal2, cause defects in the limbs and neural tubes of mice, attributable to ectopic expression of Hh target genes. While this implies a functional conservation of Cos2 and Kif7 between flies and vertebrates, the association of Kif7 with the primary cilium, an organelle absent from most Drosophila cells, suggests their mechanisms of action may have diverged. Here, using mutant alleles induced by Zinc Finger Nuclease-mediated targeted mutagenesis, we show that in zebrafish, Kif7 acts principally to suppress the activity of the Gli1 transcription factor. Notably, we find that endogenous Kif7 protein accumulates not only in the primary cilium, as previously observed in mammalian cells, but also in cytoplasmic puncta that disperse in response to Hh pathway activation. Moreover, we show that Drosophila Costal2 can substitute for Kif7, suggesting a conserved mode of action of the two proteins. We show that Kif7 interacts with both Gli1 and Gli2a and suggest that it functions to sequester Gli proteins in the cytoplasm, in a manner analogous to the regulation of Ci by Cos2 in Drosophila. We also show that zebrafish Kif7 potentiates Gli2a activity by promoting its dissociation from the Suppressor of Fused (Sufu) protein and present evidence that it mediates a Smo dependent modification of the full length form of Gli2a. Surprisingly, the function of Kif7 in the zebrafish embryo appears restricted principally to mesodermal derivatives, its inactivation having little effect on neural tube patterning, even when Sufu protein levels are depleted. Remarkably, zebrafish lacking all Kif7 function are viable, in contrast to the peri-natal lethality of mouse kif7 mutants but similar to some Acrocallosal or Joubert syndrome patients who are homozygous for loss of function KIF7 alleles

    Measurement of the Higgs boson production rate in association with top quarks in final states with electrons, muons, and hadronically decaying tau leptons at s√=13TeV

    Get PDF
    The rate for Higgs (H) bosons production in association with either one (tH) or two (ttÂŻH) top quarks is measured in final states containing multiple electrons, muons, or tau leptons decaying to hadrons and a neutrino, using proton–proton collisions recorded at a center-of-mass energy of 13TeV by the CMS experiment. The analyzed data correspond to an integrated luminosity of 137fb−1. The analysis is aimed at events that contain H→WW, H→ττ, or H→ZZ decays and each of the top quark(s) decays either to lepton+jets or all-jet channels. Sensitivity to signal is maximized by including ten signatures in the analysis, depending on the lepton multiplicity. The separation among tH, ttÂŻH, and the backgrounds is enhanced through machine-learning techniques and matrix-element methods. The measured production rates for the ttÂŻH and tH signals correspond to 0.92±0.19(stat)+0.17−0.13(syst) and 5.7±2.7(stat)±3.0(syst) of their respective standard model (SM) expectations. The corresponding observed (expected) significance amounts to 4.7 (5.2) standard deviations for ttÂŻH, and to 1.4 (0.3) for tH production. Assuming that the Higgs boson coupling to the tau lepton is equal in strength to its expectation in the SM, the coupling yt of the Higgs boson to the top quark divided by its SM expectation, Îșt=yt/ySMt, is constrained to be within −0.9<Îșt<−0.7 or 0.7<Îșt<1.1, at 95% confidence level. This result is the most sensitive measurement of the ttÂŻH production rate to date.SCOAP

    Non-cytotoxic nanomaterials enhance antimicrobial activities of cefmetazole against multidrug-resistant Neisseria gonorrhoeae.

    Get PDF
    The emergence and spread of antibiotic-resistant Neisseria gonorrhoeae has led to difficulties in treating patients, and novel strategies to prevent and treat this infection are urgently needed. Here, we examined 21 different nanomaterials for their potential activity against N. gonorrhoeae (ATCC 49226). Silver nanoparticles (Ag NPs, 120 nm) showed the greatest potency for reducing N. gonorrhoeae colony formation (MIC: 12.5 ”g/ml) and possessed the dominant influence on the antibacterial activity with their properties of the nanoparticles within a concentration range that did not induce cytotoxicity in human fibroblasts or epithelial cells. Electron microscopy revealed that the Ag NPs significantly reduced bacterial cell membrane integrity. Furthermore, the use of clinical isolates of multidrug-resistant N. gonorrhoeae showed that combined treatment with 120 nm Ag NPs and cefmetazole produced additive effects. This is the first report to screen the effectiveness of nanomaterials against N. gonorrhoeae, and our results indicate that 120 nm Ag NPs deliver low levels of toxicity to human epithelial cells and could be used as an adjuvant with antibiotic therapy, either for topical use or as a coating for biomaterials, to prevent or treat multidrug-resistant N. gonorrhoeae
    • 

    corecore