471 research outputs found

    Enhanced efficiency for better wastewater sludge hydrolysis conversion through ultrasonic hydrolytic pretreatment

    Full text link
    © 2016 Taiwan Institute of Chemical Engineers The major requirements for accelerating the process of anaerobic digestion and energy production are breaking the structure of waste activated sludge (WAS), and transforming it into a soluble form suitable for biodegradation. This work investigated and analysed a novel bench-scale ultrasonic system for WAS disruption and hydrolysis using ultrasonic homogenization. Different commercial sonoreactors were used at low frequencies under a variety of operating conditions (intensity, density, power, sonication time, and total suspended solids) to evaluate the effects of the equipment on sludge hydrolysis and to generate new insights into the empirical models and mechanisms applicable to the real-world processing of wastewater sludge. A relationship was established between the operating parameters and the experimental data. Results indicated an increase in sonication time or ultrasonic intensity correlated with improved sludge hydrolysis rates, sludge temperature, and reduction rate of volatile solids (33.51%). It also emerged that ultrasonication could effectively accelerate WAS hydrolysis to achieve disintegration within 5–10 min, depending on the ultrasonic intensity. This study also determined multiple alternative parameters to increase the efficiency of sludge treatment and organic matter reduction, and establish the practicality of applying ultrasonics to wastewater sludge pretreatment

    Predictors of Successful Decannulation Using a Tracheostomy Retainer in Patients with Prolonged Weaning and Persisting Respiratory Failure

    Get PDF
    Background: For percutaneously tracheostomized patients with prolonged weaning and persisting respiratory failure, the adequate time point for safe decannulation and switch to noninvasive ventilation is an important clinical issue. Objectives: We aimed to evaluate the usefulness of a tracheostomy retainer (TR) and the predictors of successful decannulation. Methods: We studied 166 of 384 patients with prolonged weaning in whom a TR was inserted into a tracheostoma. Patients were analyzed with regard to successful decannulation and characterized by blood gas values, the duration of previous spontaneous breathing, Simplified Acute Physiology Score (SAPS) and laboratory parameters. Results: In 47 patients (28.3%) recannulation was necessary, mostly due to respiratory decompensation and aspiration. Overall, 80.6% of the patients could be liberated from a tracheostomy with the help of a TR. The need for recannulation was associated with a shorter duration of spontaneous breathing within the last 24/48 h (p < 0.01 each), lower arterial oxygen tension (p = 0.025), greater age (p = 0.025), and a higher creatinine level (p = 0.003) and SAPS (p < 0.001). The risk for recannulation was 9.5% when patients breathed spontaneously for 19-24 h within the 24 h prior to decannulation, but 75.0% when patients breathed for only 0-6 h without ventilatory support (p < 0.001). According to ROC analysis, the SAPS best predicted successful decannulation {[}AUC 0.725 (95% CI: 0.634-0.815), p < 0.001]. Recannulated patients had longer durations of intubation (p = 0.046), tracheostomy (p = 0.003) and hospital stay (p < 0.001). Conclusion: In percutaneously tracheostomized patients with prolonged weaning, the use of a TR seems to facilitate and improve the weaning process considerably. The duration of spontaneous breathing prior to decannulation, age and oxygenation describe the risk for recannulation in these patients. Copyright (c) 2012 S. Karger AG, Base

    Key Role of the GITR/GITRLigand Pathway in the Development of Murine Autoimmune Diabetes: A Potential Therapeutic Target

    Get PDF
    BACKGROUND: The cross-talk between pathogenic T lymphocytes and regulatory T cells (Tregs) plays a major role in the progression of autoimmune diseases. Our objective is to identify molecules and/or pathways involved in this interaction and representing potential targets for innovative therapies. Glucocorticoid-induced tumor necrosis factor receptor (GITR) and its ligand are key players in the T effector/Treg interaction. GITR is expressed at low levels on resting T cells and is significantly up-regulated upon activation. Constitutive high expression of GITR is detected only on Tregs. GITR interacts with its ligand mainly expressed on antigen presenting cells and endothelial cells. It has been suggested that GITR triggering activates effector T lymphocytes while inhibiting Tregs thus contributing to the amplification of immune responses. In this study, we examined the role of GITR/GITRLigand interaction in the progression of autoimmune diabetes. METHODS AND FINDINGS: Treatment of 10-day-old non-obese diabetic (NOD) mice, which spontaneously develop diabetes, with an agonistic GITR-specific antibody induced a significant acceleration of disease onset (80% at 12 weeks of age). This activity was not due to a decline in the numbers or functional capacity of CD4(+)CD25(+)Foxp3(+) Tregs but rather to a major activation of 'diabetogenic' T cells. This conclusion was supported by results showing that anti-GITR antibody exacerbates diabetes also in CD28(-/-) NOD mice, which lack Tregs. In addition, treatment of NOD mice, infused with the diabetogenic CD4(+)BDC2.5 T cell clone, with GITR-specific antibody substantially increased their migration, proliferation and activation within the pancreatic islets and draining lymph nodes. As a mirror image, blockade of the GITR/GITRLigand pathway using a neutralizing GITRLigand-specific antibody significantly protected from diabetes even at late stages of disease progression. Experiments using the BDC2.5 T cell transfer model suggested that the GITRLigand antibody acted by limiting the homing and proliferation of pathogenic T cells in pancreatic lymph nodes. CONCLUSION: GITR triggering plays an important costimulatory role on diabetogenic T cells contributing to the development of autoimmune responses. Therefore, blockade of the GITR/GITRLigand pathway appears as a novel promising clinically oriented strategy as GITRLigand-specific antibody applied at an advanced stage of disease progression can prevent overt diabetes

    Association of IFNGR2 gene polymorphisms with pulmonary tuberculosis among the Vietnamese

    Get PDF
    Interferon-γ (IFN-γ) is a key molecule of T helper 1 (Th1)-immune response against tuberculosis (TB), and rare genetic defects of IFN-γ receptors cause disseminated mycobacterial infection. The aim of the present study was to investigate whether genetic polymorphisms found in the Th1-immune response genes play a role in TB. In our study, DNA samples were collected from two series of cases including 832 patients with new smear-positive TB and 506 unrelated individuals with no history of TB in the general population of Hanoi, Vietnam. Alleles of eight microsatellite markers located around Th1-immune response-related genes and single nucleotide polymorphisms near the promising microsatellites were genotyped. A set of polymorphisms within the interferon gamma receptor 2 gene (IFNGR2) showed a significant association with protection against TB (P = 0.00054). Resistant alleles tend to be less frequently found in younger age at diagnosis (P = 0.011). Luciferase assays revealed high transcriptional activity of the promoter segment in linkage disequilibrium with resistant alleles. We conclude that the polymorphisms of IFNGR2 may confer resistance to the TB development of newly infected individuals. Contribution of the genetic factors to TB appeared to be different depending on age at diagnosis

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur

    Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV

    Get PDF
    We report the first measurement of charged particle elliptic flow in Pb-Pb collisions at 2.76 TeV with the ALICE detector at the CERN Large Hadron Collider. The measurement is performed in the central pseudorapidity region (|η\eta|<0.8) and transverse momentum range 0.2< pTp_{\rm T}< 5.0 GeV/cc. The elliptic flow signal v2_2, measured using the 4-particle correlation method, averaged over transverse momentum and pseudorapidity is 0.087 ±\pm 0.002 (stat) ±\pm 0.004 (syst) in the 40-50% centrality class. The differential elliptic flow v2(pT)_2(p_{\rm T}) reaches a maximum of 0.2 near pTp_{\rm T} = 3 GeV/cc. Compared to RHIC Au-Au collisions at 200 GeV, the elliptic flow increases by about 30%. Some hydrodynamic model predictions which include viscous corrections are in agreement with the observed increase.Comment: 10 pages, 4 captioned figures, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/389

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore