507 research outputs found

    Reducing Uncertainties in Applying Remotely Sensed Land Use and Land Cover Maps in Land-Atmosphere Interaction: Identifying Change in Space and Time

    Get PDF
    Land use and land cover (LULC) data are a central component of most land-atmosphere interaction studies, but there are two common and highly problematic scale mismatches between LULC and climate data. First, in the spatial domain, researchers rarely consider the impact of scaling up fine-scale LULC data to match coarse-scale climate datasets. Second, in the temporal domain, climate data typically have sub-daily, daily, monthly, or annual resolution, but LULC datasets often have much coarser (e.g., decadal) resolution. We first explored the effect of three spatial scaling methods on correlations among LULC data and a land surface climatic variable, latent heat flux in China. Scaling by a fractional method preserved significant correlations among LULC data and latent heat flux at all three studied scales (0.5°, 1.0°, and 2.5°), whereas nearest-neighbor and majority-aggregation methods caused these correlations to diminish and even become statistically non-significant at coarser spatial scales (i.e., 2.5°). In the temporal domain, we identified fractional changes in croplands, forests, and grasslands in China using a recently developed and annually resolved time series of LULC maps from 1982 to 2012. Relative to common LULC change (LULCC) analyses conducted over two-time steps or several time periods, this annually resolved, 31-year time series of LULC maps enables robust interpretation of LULCC. Specifically, the annual resolution of these data enabled us to more precisely observe three key and statistically significant LULCC trends and transitions that could have consequential effects on land-atmosphere interaction: (1) decreasing grasslands to increasing croplands in the Northeast China plain and the Yellow river basin, (2) decreasing croplands to increasing forests in the Yangtze river basin, and (3) decreasing grasslands to increasing forests in Southwest China. Our study not only demonstrates the importance of using a fractional spatial rescaling method, but also illustrates the value of annually resolved LULC time series for detecting significant trends and transitions in LULCC, thus potentially facilitating a more robust use of remotely sensed data in land-atmosphere interaction studies

    Intrinsic Correlation between Hardness and Elasticity in Polycrystalline Materials and Bulk Metallic Glasses

    Full text link
    Though extensively studied, hardness, defined as the resistance of a material to deformation, still remains a challenging issue for a formal theoretical description due to its inherent mechanical complexity. The widely applied Teter's empirical correlation between hardness and shear modulus has been considered to be not always valid for a large variety of materials. Here, inspired by the classical work on Pugh's modulus ratio, we develop a theoretical model which establishes a robust correlation between hardness and elasticity for a wide class of materials, including bulk metallic glasses, with results in very good agreement with experiment. The simplified form of our model also provides an unambiguous theoretical evidence for Teter's empirical correlation.Comment: 10 pages, 4 figures and 3 table

    Promotion of plasma membrane repair by vitamin E

    Get PDF
    Severe vitamin E deficiency results in lethal myopathy in animal models. Membrane repair is an important myocyte response to plasma membrane disruption injury as when repair fails, myocytes die and muscular dystrophy ensues. Here we show that supplementation of cultured cells with α-tocopherol, the most common form of vitamin E, promotes plasma membrane repair. Conversely, in the absence of α-tocopherol supplementation, exposure of cultured cells to an oxidant challenge strikingly inhibits repair. Comparative measurements reveal that, to promote repair, an anti-oxidant must associate with membranes, as α-tocopherol does, or be capable of α-tocopherol regeneration. Finally, we show that myocytes in intact muscle cannot repair membranes when exposed to an oxidant challenge, but show enhanced repair when supplemented with vitamin E. Our work suggests a novel biological function for vitamin E in promoting myocyte plasma membrane repair. We propose that this function is essential for maintenance of skeletal muscle homeostasis

    A pseudospark cathode Cherenkov maser : theory and experiment

    Get PDF
    The pseudospark discharge offers the possibility of producing electron beams which are very attractive for use in high-power microwave generation. A pseudospark-based Cherenkov maser amplifier is currently under development at Strathclyde University. The electron beam source for this maser is a multi-gap pseudospark discharge. Preliminary results from recent Cherenkov maser experiments and a comparison with a numerical simulation are presented. A microwave pulse of 100 ns duration and approximately 10 kW peak power was generated by a 80 kV, 20 A beam passed through an alumina-lined waveguide when the interaction was allowed to start up from noise, which appeared to originate from the pseudospark discharge. Simulations agree well with the experimental results when a beam energy spread of 1.5% is assumed

    Mechanical properties of freely suspended atomically thin dielectric layers of mica

    Full text link
    We have studied the elastic deformation of freely suspended atomically thin sheets of muscovite mica, a widely used electrical insulator in its bulk form. Using an atomic force microscope, we carried out bending test experiments to determine the Young's modulus and the initial pre-tension of mica nanosheets with thicknesses ranging from 14 layers down to just one bilayer. We found that their Young's modulus is high (190 GPa), in agreement with the bulk value, which indicates that the exfoliation procedure employed to fabricate these nanolayers does not introduce a noticeable amount of defects. Additionally, ultrathin mica shows low pre-strain and can withstand reversible deformations up to tens of nanometers without breaking. The low pre-tension and high Young's modulus and breaking force found in these ultrathin mica layers demonstrates their prospective use as a complement for graphene in applications requiring flexible insulating materials or as reinforcement in nanocomposites.Comment: 9 pages, 5 figures, selected as cover of Nano Research, Volume 5, Number 8 (2012

    Visible light emission from thin films containing Si, O, N, and H

    Get PDF
    We report the fabrication, chemical, optical, and photoluminescence characterization of amorphous silicon‐rich oxynitride (SiO x N y :H) thin films by plasma‐enhanced chemical‐vapor deposition. The film compositions were followed by changes in the refractive index. X‐ray photoelectron and Fourier transform infrared spectroscopy indicate that the chemical composition is dominated by silicon suboxide bonding with N present as a significant impurity. A broad tunable photoluminescence (PL) emission is visible at room temperature with a quantum efficiency of 0.011% at peak energies to 3.15 eV. The radiative lifetimes are less than 10 ns, and there is nearly no temperature dependence of the PL intensity down to 80 K. Ex situannealing at temperatures above 850 °C results in an increase in PL efficiency by nearly three orders of magnitude, and the PL intensity is independent of the annealing ambient. The PL results are remarkably similar to literature results in oxidized porous silicon and oxidized nanocrystalline Si thin films, and suggest that the radiative center is due to the defect structure in the silicon suboxide moiety

    Investigation of attentional bias in obsessive compulsive disorder with and without depression in visual search

    Get PDF
    Copyright: © 2013 Morein-Zamir et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedWhether Obsessive Compulsive Disorder (OCD) is associated with an increased attentional bias to emotive stimuli remains controversial. Additionally, it is unclear whether comorbid depression modulates abnormal emotional processing in OCD. This study examined attentional bias to OC-relevant scenes using a visual search task. Controls, non-depressed and depressed OCD patients searched for their personally selected positive images amongst their negative distractors, and vice versa. Whilst the OCD groups were slower than healthy individuals in rating the images, there were no group differences in the magnitude of negative bias to concern-related scenes. A second experiment employing a common set of images replicated the results on an additional sample of OCD patients. Although there was a larger bias to negative OC-related images without pre-exposure overall, no group differences in attentional bias were observed. However, OCD patients subsequently rated the images more slowly and more negatively, again suggesting post-attentional processing abnormalities. The results argue against a robust attentional bias in OCD patients, regardless of their depression status and speak to generalized difficulties disengaging from negative valence stimuli. Rather, post-attentional processing abnormalities may account for differences in emotional processing in OCD.Peer reviewedFinal Published versio

    Strengthening seasonal marine CO2 variations due to increasing atmospheric CO2

    Get PDF
    The increase of atmospheric CO2 (ref. 1) has been predicted to impact the seasonal cycle of inorganic carbon in the global ocean2,3, yet the observational evidence to verify this prediction has been missing. Here, using an observation-based product of the oceanic partial pressure of CO2 (pCO2) covering the past 34 years, we find that the winter-to-summer difference of the pCO2 has increased on average by 2.2 ± 0.4 μatm per decade from 1982 to 2015 poleward of 10° latitude. This is largely in agreement with the trend expected from thermodynamic considerations. Most of the increase stems from the seasonality of the drivers acting on an increasing oceanic pCO2 caused by the uptake of anthropogenic CO2 from the atmosphere. In the high latitudes, the concurrent ocean-acidification-induced changes in the buffer capacity of the ocean enhance this effect. This strengthening of the seasonal winter-to-summer difference pushes the global ocean towards critical thresholds earlier, inducing stress to ocean ecosystems and fisheries4. Our study provides observational evidence for this strengthening seasonal difference in the oceanic carbon cycle on a global scale, illustrating the inevitable consequences of anthropogenic CO2 emissions

    Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding

    Get PDF
    Data availability: All data generated during this study that support the findings are included in the manuscript or in the Supplementary Information.Copyright © 2022, Furniss et al. Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers.MRC Career Development Award MR/M009505/1 (to D.A.I.M.); the institutional BBSRC-DTP studentships BB/M011178/1 (to N.K.) and BB/M01116X/1 (to H.L.P.); the BBSRC David Philips Fellowship BB/M02623X/1 (to J.M.A.B.); the ISSF Wellcome Trust grant 105603/Z/14/Z (to G.L.-M.); the Brunel Research Innovation and Enterprise Fund, Innovate UK and British Society for Antimicrobial Chemotherapy grants 2018-11143, 37800 and BSAC-2018-0095, respectively (to R.R.MC); the Swiss National Science Foundation Postdoc Mobility and Ambizione Fellowships P300PA_167703 and PZ00P3_180142, respectively (to D.G.)

    Measurement of the Atmospheric Muon Spectrum from 20 to 3000 GeV

    Get PDF
    The absolute muon flux between 20 GeV and 3000 GeV is measured with the L3 magnetic muon spectrometer for zenith angles ranging from 0 degree to 58 degree. Due to the large exposure of about 150 m2 sr d, and the excellent momentum resolution of the L3 muon chambers, a precision of 2.3 % at 150 GeV in the vertical direction is achieved. The ratio of positive to negative muons is studied between 20 GeV and 500 GeV, and the average vertical muon charge ratio is found to be 1.285 +- 0.003 (stat.) +- 0.019 (syst.).Comment: Total 32 pages, 9Figure
    corecore