7,134 research outputs found
The Experimental Status of the Standard Electroweak Model at the End of the LEP-SLC Era
A method is proposed to calculate the confidence level for agreement of data
with the Standard Model (SM) by combining information from direct and indirect
Higgs Boson searches. Good agreement with the SM is found for
GeV using the observables most sensitive to : and . In
particular, quantum corrections, as predicted by the SM, are observed with a
statistical significance of forty-four standard deviations. However, apparent
deviations from the SM of 3.7 and 2.8 are found for the Z and right-handed Zb couplings respectively. The
maximum confidence level for agreement with the SM of the entire data set
considered is for GeV. The reason why
confidence levels about an order of magnitude higher than this have been
claimed for global fits to similar data sets is explained.Comment: 47 pages, 8 figures, 24 tables. An in-depth study of statistical
issues related to the comparison of precision EW data to the S
Sex-biased parental care and sexual size dimorphism in a provisioning arthropod
The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests.
To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest.
We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight.
Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species
Core pinning by intragranular nanoprecipitates in polycrystalline MgCNi_3
The nanostructure and magnetic properties of polycrystalline MgCNi_3 were
studied by x-ray diffraction, electron microscopy, and vibrating sample
magnetometry. While the bulk flux-pinning force curve F_p(H) indicates the
expected grain-boundary pinning mechanism just below T_c = 7.2 K, a systematic
change to pinning by a nanometer-scale distribution of core pinning sites is
indicated by a shift of F_p(H) with decreasing temperature. The lack of scaling
of F_p(H) suggests the presence of 10 to 20% of nonsuperconducting regions
inside the grains, which are smaller than the diameter of fluxon cores 2xi at
high temperature and become effective with decreasing temperature when xi(T)
approaches the nanostructural scale. Transmission electron microscopy revealed
cubic and graphite nanoprecipitates with 2 to 5 nm size, consistent with the
above hypothesis since xi(0) = 6 nm. High critical current densities, more than
10^6 A/cm^2 at 1 T and 4.2 K, were obtained for grain colonies separated by
carbon. Dirty-limit behavior seen in previous studies may be tied to electron
scattering by the precipitates, indicating the possibility that strong core
pinning might be combined with a technologically useful upper critical field if
versions of MgCNi_3 with higher T_c can be found.Comment: 5 pages, 6 figures, submitted to PR
Robust Estimators in Generalized Pareto Models
This paper deals with optimally-robust parameter estimation in generalized
Pareto distributions (GPDs). These arise naturally in many situations where one
is interested in the behavior of extreme events as motivated by the
Pickands-Balkema-de Haan extreme value theorem (PBHT). The application we have
in mind is calculation of the regulatory capital required by Basel II for a
bank to cover operational risk. In this context the tail behavior of the
underlying distribution is crucial. This is where extreme value theory enters,
suggesting to estimate these high quantiles parameterically using, e.g. GPDs.
Robust statistics in this context offers procedures bounding the influence of
single observations, so provides reliable inference in the presence of moderate
deviations from the distributional model assumptions, respectively from the
mechanisms underlying the PBHT.Comment: 26pages, 6 figure
The contribution of the IGM and minihalos to the 21 cm signal of reionization
We study the statistical properties of the cosmological 21 cm signal from
both the intergalactic medium (IGM) and minihalos, using a reionization
simulation that includes a self--consistent treatment of minihalo
photoevaporation. We consider two models for minihalo formation and three
typical thermal states of the IGM -- heating purely by ionization, heating from
both ionizing and photons, and a maximal "strong heating" model.
We find that the signal from the IGM is almost always dominant over that from
minihalos. In our calculation, the differential brightness temperature,
of minihalos is never larger than 2 mK. Although there are
indeed some differences in the signals from the minihalos and from the IGM,
even with the planned generation of radio telescopes it will be unfeasible to
detect them. However, minihalos significantly affect the ionization state of
the IGM and the corresponding 21 cm flux.Comment: 13 pages, 12 figures, accepted by MNRA
Hecke Groups, Dessins d’Enfants and the Archimedean Solids
Grothendieck’s dessins d’enfants arise with ever-increasing frequency in many areas of 21st century mathematical physics. In this paper, we review the connections between dessins and the theory of Hecke groups. Focussing on the restricted class of highly symmetric dessins corresponding to the so-called Archimedean solids, we apply this theory in order to provide a means of computing representatives of the associated conjugacy classes of Hecke subgroups in each case. The aim of this paper is to demonstrate that dessins arising in mathematical physics can point to new and hitherto unexpected directions for further research. In addition, given the particular ubiquity of many of the dessins corresponding to the Archimedean solids, the hope is that the computational results of this paper will prove useful in the further study of these objects in mathematical physics contexts
Characterisation of Bombyx mori odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components
In many insect species, odorant-binding proteins (OBPs) are thought to be responsible for the transport of pheromones and other semiochemicals across the sensillum lymph to the olfactory receptors (ORs) within the antennal sensilla. In the silkworm Bombyx mori, the OBPs are subdivided into three main subfamilies; pheromone-binding proteins (PBPs), general odorant-binding proteins (GOBPs) and antennal-binding proteins (ABPs). We used the MotifSearch algorithm to search for genes encoding putative OBPs in B. mori and found 13, many fewer than are found in the genomes of fruit flies and mosquitoes. The 13 genes include seven new ABP-like OBPs as well as the previously identified PBPs (three), GOBPs (two) and ABPx. Quantitative examination of transcript levels showed that BmorPBP1, BmorGOBP1, BmorGOBP2 and BmorABPx are expressed at very high levels in the antennae and so could be involved in olfaction. A new two-phase binding assay, along with other established assays, showed that BmorPBP1, BmorPBP2, BmorGOBP2 and BmorABPx all bind to the B. mori sex pheromone component (10E,12Z)-hexadecadien-1-ol (bombykol). BmorPBP1, BmorPBP2 and BmorABPx also bind the pheromone component (10E,12Z)-hexadecadienal (bombykal) equally well, whereas BmorGOBP2 can discriminate between bombykol and bombykal. X-ray structures show that when bombykol is bound to BmorGOBP2 it adopts a different conformation from that found when it binds to BmorPBP1. Binding to BmorGOBP2 involves hydrogen bonding to Arg110 rather than to Ser56 as found for BmorPBP1
Structural plasticity of the living kinetochore
The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells
- …
