3,319 research outputs found
Direct Detection of Electroweak-Interacting Dark Matter
Assuming that the lightest neutral component in an SU(2)L gauge multiplet is
the main ingredient of dark matter in the universe, we calculate the elastic
scattering cross section of the dark matter with nucleon, which is an important
quantity for the direct detection experiments. When the dark matter is a real
scalar or a Majorana fermion which has only electroweak gauge interactions, the
scattering with quarks and gluon are induced through one- and two-loop quantum
processes, respectively, and both of them give rise to comparable contributions
to the elastic scattering cross section. We evaluate all of the contributions
at the leading order and find that there is an accidental cancellation among
them. As a result, the spin-independent cross section is found to be
O(10^-(46-48)) cm^2, which is far below the current experimental bounds.Comment: 19 pages, 7 figures, published versio
Evolution in the Cluster Early-type Galaxy Size-Surface Brightness Relation at z =~ 1
We investigate the evolution in the distribution of surface brightness, as a
function of size, for elliptical and S0 galaxies in the two clusters RDCS
J1252.9-2927, z=1.237 and RX J0152.7-1357, z=0.837. We use multi-color imaging
with the Advanced Camera for Surveys on the Hubble Space Telescope to determine
these sizes and surface brightnesses. Using three different estimates of the
surface brightnesses, we find that we reliably estimate the surface brightness
for the galaxies in our sample with a scatter of < 0.2 mag and with systematic
shifts of \lesssim 0.05 mag. We construct samples of galaxies with early-type
morphologies in both clusters. For each cluster, we use a magnitude limit in a
band which closely corresponds to the rest-frame B, to magnitude limit of M_B =
-18.8 at z=0, and select only those galaxies within the color-magnitude
sequence of the cluster or by using our spectroscopic redshifts. We measure
evolution in the rest-frame B surface brightness, and find -1.41 \+/- 0.14 mag
from the Coma cluster of galaxies for RDCS J1252.9-2927 and -0.90 \+/- 0.12 mag
of evolution for RX J0152.7-1357, or an average evolution of (-1.13 \+/- 0.15)
z mag. Our statistical errors are dominated by the observed scatter in the
size-surface brightness relation, sigma = 0.42 \+/- 0.05 mag for RX
J0152.7-1357 and sigma = 0.76 \+/- 0.10 mag for RDCS J1252.9-2927. We find no
statistically significant evolution in this scatter, though an increase in the
scatter could be expected. Overall, the pace of luminosity evolution we measure
agrees with that of the Fundamental Plane of early-type galaxies, implying that
the majority of massive early-type galaxies observed at z =~ 1 formed at high
redshifts.Comment: Accepted in ApJ, 16 pages in emulateapj format with 15 eps figures, 6
in colo
The unmasking of Pneumocystis jiroveci pneumonia during reversal of immunosuppression: Case reports and literature review
Background: Pneumocystis jiroveci pneumonia (PCP) is an important opportunistic infection among immunosuppressed patients, especially in those infected with human immunodeficiency virus (HIV). The clinical presentation of PCP in immunosuppressed patients have been well-reported in the literature. However, the clinical importance of PCP manifesting in the setting of an immunorestitution disease (IRD), defined as an acute symptomatic or paradoxical deterioration of a (presumably) preexisting infection, which is temporally related to the recovery of the immune system and is due to immunopathological damage associated with the reversal of immunosuppressive processes, has received relatively little attention until recently. Case presentation: We aim to better define this unique clinical syndrome by reporting two cases of PCP manifesting acutely with respiratory failure during reversal of immunosuppression in non-HIV infected patients, and reviewed the relevant literature. We searched our databases for PCP cases manifesting in the context of IRD according to our predefined case definition, and reviewed the case notes retrospectively. A comprehensive search was performed using the Medline database of the National Library of Medicine for similar cases reported previously in the English literature in October 2003. A total of 28 non-HIV (excluding our present case) and 13 HIV-positive patients with PCP manifesting as immunorestitution disease (IRD) have been reported previously in the literature. During immunorestitution, a consistent rise in the median CD4 lymphocyte count (28/μL to 125/μL), with a concomitant fall in the median HIV viral load (5.5 log10 copies/ml to 3.1 log10 copies/ml) was observed in HIV-positive patients who developed PCP. A similar upsurge in peripheral lymphocyte count was observed in our patients preceding the development of PCP, as well as in other non-HIV immunosuppressed patients reported in the literature. Conclusions: PCP manifesting as IRD may be more common than is generally appreciated. Serial monitoring of total lymphocyte or CD4 count could serve as a useful adjunct to facilitate the early diagnosis and pre-emptive treatment of this condition in a wide range of immunosuppressed hosts, especially in the presence of new pulmonary symptoms and/or radiographic abnormalities compatible with the diagnosis. © 2004 Wu et al; licensee BioMed Central Ltd.published_or_final_versio
Global parameter search reveals design principles of the mammalian circadian clock
Background: Virtually all living organisms have evolved a circadian (~24 hour) clock that controls physiological and behavioural processes with exquisite precision throughout the day/night cycle. The suprachiasmatic nucleus (SCN), which generates these ~24 h rhythms in mammals, consists of
several thousand neurons. Each neuron contains a gene-regulatory network generating molecular oscillations, and the individual neuron oscillations are synchronised by intercellular coupling, presumably via neurotransmitters. Although this basic mechanism is currently accepted and has
been recapitulated in mathematical models, several fundamental questions about the design principles of the SCN remain little understood. For example, a remarkable property of the SCN is that the phase of the SCN rhythm resets rapidly after a 'jet lag' type experiment, i.e. when the light/ dark (LD) cycle is abruptly advanced or delayed by several hours.
Results: Here, we describe an extensive parameter optimization of a previously constructed simplified model of the SCN in order to further understand its design principles. By examining the top 50 solutions from the parameter optimization, we show that the neurotransmitters' role in generating the molecular circadian rhythms is extremely important. In addition, we show that when
a neurotransmitter drives the rhythm of a system of coupled damped oscillators, it exhibits very robust synchronization and is much more easily entrained to light/dark cycles. We were also able to recreate in our simulations the fast rhythm resetting seen after a 'jet lag' type experiment.
Conclusion: Our work shows that a careful exploration of parameter space for even an extremely simplified model of the mammalian clock can reveal unexpected behaviours and non-trivial predictions. Our results suggest that the neurotransmitter feedback loop plays a crucial role in the
robustness and phase resetting properties of the mammalian clock, even at the single neuron level
Proteomics of synapse
Large-scale phosphoproteome analysis on synaptosome and preparation of post-synaptic density (PSD) were investigated. It was found that protein phosphor is a common event in the synapse, which is consistent with the presence of diverse classes of kinases and phosphatases in the synapse. Synaptic proteomics analysis required the purification of subcellular organelles from the brain regions of interest. Multiple steps of discontinuous density gradient ultra-centrifugation were employed to enrich the distinct organelles. Two-dimensional gel electrophoresis was used to separate and quantify proteins, including post-translational modified forms, from synaptic structures. It was observed that proteomic analysis of the synaptic vesicle identified 36 proteins, including seven integral membrane proteins and vesicle regulatory proteins
Three-loop HTL QCD thermodynamics
The hard-thermal-loop perturbation theory (HTLpt) framework is used to
calculate the thermodynamic functions of a quark-gluon plasma to three-loop
order. This is the highest order accessible by finite temperature perturbation
theory applied to a non-Abelian gauge theory before the high-temperature
infrared catastrophe. All ultraviolet divergences are eliminated by
renormalization of the vacuum, the HTL mass parameters, and the strong coupling
constant. After choosing a prescription for the mass parameters, the three-loop
results for the pressure and trace anomaly are found to be in very good
agreement with recent lattice data down to , which are
temperatures accessible by current and forthcoming heavy-ion collision
experiments.Comment: 27 pages, 11 figures; corresponds with published version in JHE
On the Importance of Countergradients for the Development of Retinotopy: Insights from a Generalised Gierer Model
During the development of the topographic map from vertebrate retina to superior colliculus (SC), EphA receptors are expressed in a gradient along the nasotemporal retinal axis. Their ligands, ephrin-As, are expressed in a gradient along the rostrocaudal axis of the SC. Countergradients of ephrin-As in the retina and EphAs in the SC are also expressed. Disruption of any of these gradients leads to mapping errors. Gierer's (1981) model, which uses well-matched pairs of gradients and countergradients to establish the mapping, can account for the formation of wild type maps, but not the double maps found in EphA knock-in experiments. I show that these maps can be explained by models, such as Gierer's (1983), which have gradients and no countergradients, together with a powerful compensatory mechanism that helps to distribute connections evenly over the target region. However, this type of model cannot explain mapping errors found when the countergradients are knocked out partially. I examine the relative importance of countergradients as against compensatory mechanisms by generalising Gierer's (1983) model so that the strength of compensation is adjustable. Either matching gradients and countergradients alone or poorly matching gradients and countergradients together with a strong compensatory mechanism are sufficient to establish an ordered mapping. With a weaker compensatory mechanism, gradients without countergradients lead to a poorer map, but the addition of countergradients improves the mapping. This model produces the double maps in simulated EphA knock-in experiments and a map consistent with the Math5 knock-out phenotype. Simulations of a set of phenotypes from the literature substantiate the finding that countergradients and compensation can be traded off against each other to give similar maps. I conclude that a successful model of retinotopy should contain countergradients and some form of compensation mechanism, but not in the strong form put forward by Gierer
Structural insight into SUMO chain recognition and manipulation by the ubiquitin ligase RNF4
The small ubiquitin-like modifier (SUMO) can form polymeric chains that are important signals in cellular processes such as meiosis, genome maintenance and stress response. The SUMO-targeted ubiquitin ligase RNF4 engages with SUMO chains on linked substrates and catalyses their ubiquitination, which targets substrates for proteasomal degradation. Here we use a segmental labelling approach combined with solution nuclear magnetic resonance (NMR) spectroscopy and biochemical characterization to reveal how RNF4 manipulates the conformation of the SUMO chain, thereby facilitating optimal delivery of the distal SUMO domain for ubiquitin transfer
Vacuum stability of asymptotically safe
We study the phase diagram and the stability of the ground state for certain four-dimensional gauge-Yukawa theories whose high-energy behaviour is controlled by an interacting fixed point. We also provide analytical and numerical results for running couplings, their crossover scales, the separatrix, and the Coleman-Weinberg effective potential. Classical and quantum stability of the vacuum is established
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
- …
