12 research outputs found

    Arabidopsis Serine Decarboxylase Mutants Implicate the Roles of Ethanolamine in Plant Growth and Development

    Get PDF
    Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase. Serine decarboxylase is unique to plants and was previously shown to have highly specific activity to l-serine. While serine decarboxylase was biochemically characterized, its functions and importance in plants were not biologically elucidated due to the lack of serine decarboxylase mutants. Here we characterized an Arabidopsis mutant defective in serine decarboxylase, named atsdc-1 (Arabidopsis thaliana serine decarboxylase-1). The atsdc-1 mutants showed necrotic lesions in leaves, multiple inflorescences, sterility in flower, and early flowering in short day conditions. These defects were rescued by ethanolamine application to atsdc-1, suggesting the roles of ethanolamine as well as serine decarboxylase in plant development. In addition, molecular analysis of serine decarboxylase suggests that Arabidopsis serine decarboxylase is cytosol-localized and expressed in all tissue

    NAD metabolism and sirtuins: Metabolic regulation of protein deacetylation in stress and toxicity

    No full text
    Sirtuins are recently discovered NAD+-dependent deacetylases that remove acetyl groups from acetyllysine-modified proteins, thereby regulating the biological function of their targets. Sirtuins have been shown to increase organism and tissue survival in diverse organisms, ranging from yeast to mammals. Evidence indicates that NAD+ metabolism and sirtuins contribute to mechanisms that influence cell survival under conditions of stress and toxicity. For example, recent work has shown that sirtuins and increased NAD+ biosynthesis provide protection against neuron axonal degeneration initiated by genotoxicity or trauma. In light of their protective effects, sirtuins and NAD+ metabolism could represent therapeutic targets for treatment of acute and chronic neurodegenerative conditions. Our work has focused on elucidating the enzymatic functions of sirtuins and quantifying perturbations of cellular NAD+ metabolism. We have developed mass spectrometry methods to quantitate cellular NAD+ and nicotinamide. These methods allow the quantitation of changes in the amounts of these metabolites in cells caused by chemical and genetic interventions. Characterization of the biochemical properties of sirtuins and investigations of NAD+ metabolism are likely to provide new insights into mechanisms by which NAD+ metabolism regulates sirtuin activities in cells. To develop new strategies to improve cell stress resistance, we have initiated proof of concept studies on pharmacological approaches that target sirtuins and NAD+ metabolism, with the goal of enhancing cell protection against genotoxicity
    corecore