609 research outputs found

    FPTAS for optimizing polynomials over the mixed-integer points of polytopes in fixed dimension

    Full text link
    We show the existence of a fully polynomial-time approximation scheme (FPTAS) for the problem of maximizing a non-negative polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed. Moreover, using a weaker notion of approximation, we show the existence of a fully polynomial-time approximation scheme for the problem of maximizing or minimizing an arbitrary polynomial over mixed-integer sets in convex polytopes, when the number of variables is fixed.Comment: 16 pages, 4 figures; to appear in Mathematical Programmin

    The local power of the gradient test

    Full text link
    The asymptotic expansion of the distribution of the gradient test statistic is derived for a composite hypothesis under a sequence of Pitman alternative hypotheses converging to the null hypothesis at rate n−1/2n^{-1/2}, nn being the sample size. Comparisons of the local powers of the gradient, likelihood ratio, Wald and score tests reveal no uniform superiority property. The power performance of all four criteria in one-parameter exponential family is examined.Comment: To appear in the Annals of the Institute of Statistical Mathematics, this http://www.ism.ac.jp/editsec/aism-e.htm

    Restricted three body problems at the nanoscale

    Full text link
    In this paper, we investigate some of the classical restricted three body problems at the nanoscale, such as the circular planar restricted problem for three C60 fullerenes, and a carbon atom and two C60 fullerenes. We model the van der Waals forces between the fullerenes by the Lennard-Jones potential. In particular, the pairwise potential energies between the carbon atoms on the fullerenes are approximated by the continuous approach, so that the total molecular energy between two fullerenes can be determined analytically. Since we assume that such interactions between the molecules occur at sufficiently large distance, the classical three body problems analysis is legitimate to determine the collective angular velocity of the two and three C60 fullerenes at the nanoscale. We find that the maximum angular frequency of the two and three fullerenes systems reach the terahertz range and we determine the stationary points and the points which have maximum velocity for the carbon atom for the carbon atom and the two fullerenes system

    Development of a Stable Respiratory Syncytial Virus Pre-Fusion Protein Powder Suitable for a Core-Shell Implant with a Delayed Release in Mice:A Proof of Concept Study

    Get PDF
    Currently, there is an increasing interest to apply pre-fusion (pre-F) protein of respiratory syncytial virus (RSV) as antigen for the development of a subunit vaccine. A pre-F-containing powder would increase the flexibility regarding the route of administration. For instance, a pre-F-containing powder could be incorporated into a single-injection system releasing a primer, and after a lag time, a booster. The most challenging aspect, obtaining the booster after a lag time, may be achieved by incorporating the powder into a core encapsulated by a nonporous poly(dl-lactic-co-glycolic acid) (PLGA) shell. We intended to develop a stable freeze-dried pre-F-containing powder. Furthermore, we investigated whether incorporation of this powder into the core-shell implant was feasible and whether this system would induce a delayed RSV virus-neutralizing antibody (VNA) response in mice. The developed pre-F-containing powder, consisting of pre-F in a matrix of inulin, HEPES, sodium chloride, and Tween 80, was stable during freeze-drying and storage for at least 28 days at 60 degrees C. Incorporation of this powder into the core-shell implant was feasible and the core-shell production process did not affect the stability of pre-F. An in vitro release study showed that pre-F was incompletely released from the core-shell implant after a lag time of 4 weeks. The incomplete release may be the result of pre-F instability within the core-shell implant during the lag time and requires further research. Mice subcutaneously immunized with a pre-F-containing core-shell implant showed a delayed RSV VNA response that corresponded with pre-F release from the core-shell implant after a lag time of approximately 4 weeks. Moreover, pre-F-containing core-shell implants were able to boost RSV VNA titers of primed mice after a lag time of 4 weeks. These findings could contribute to the development of a single-injection pre-F-based vaccine containing a primer and a booster

    Binding Energy of Charged Excitons in ZnSe-based Quantum Wells

    Full text link
    Excitons and charged excitons (trions) are investigated in ZnSe-based quantum well structures with (Zn,Be,Mg)Se and (Zn,Mg)(S,Se) barriers by means of magneto-optical spectroscopy. Binding energies of negatively () and positively (X+) charged excitons are measured as functions of quantum well width, free carrier density and in external magnetic fields up to 47 T. The binding energy of shows a strong increase from 1.4 to 8.9 meV with decreasing quantum well width from 190 to 29 A. The binding energies of X+ are about 25% smaller than the binding energy in the same structures. The magnetic field behavior of and X+ binding energies differ qualitatively. With growing magnetic field strength, increases its binding energy by 35-150%, while for X+ it decreases by 25%. Zeeman spin splittings and oscillator strengths of excitons and trions are measured and discussed

    Global Search for New Physics with 2.0/fb at CDF

    Get PDF
    Data collected in Run II of the Fermilab Tevatron are searched for indications of new electroweak-scale physics. Rather than focusing on particular new physics scenarios, CDF data are analyzed for discrepancies with the standard model prediction. A model-independent approach (Vista) considers gross features of the data, and is sensitive to new large cross-section physics. Further sensitivity to new physics is provided by two additional algorithms: a Bump Hunter searches invariant mass distributions for "bumps" that could indicate resonant production of new particles; and the Sleuth procedure scans for data excesses at large summed transverse momentum. This combined global search for new physics in 2.0/fb of ppbar collisions at sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D Rapid Communication

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    What Physical Processes Drive the Interstellar Medium in the Local Bubble?

    Get PDF
    Recent 3D high-resolution simulations of the interstellar medium in a star form- ing galaxy like the Milky Way show that supernova explosions are the main driver of the structure and evolution of the gas. Its physical state is largely controlled by turbulence due to the high Reynolds numbers of the average flows. For a constant supernova rate a dynam- ical equilibrium is established within 200 Myr of simulation as a consequence of the setup of a galactic fountain. The resulting interstellar medium reveals a typical density/pressure pattern, i.e. distribution of so-called gas phases, on scales of 500–700 pc, with interstellar bubbles being a common phenomenon just like the Local Bubble and the Loop I superbub- ble, which are assumed to be interacting. However, modeling the Local Bubble is special, because it is driven by a moving group, passing through its volume, as it is inferred from the analysis of Hipparcos data. A detailed analysis reveals that between 14 and 19 super- novae have exploded during the last 15 Myr. The age of the Local Bubble is derived from comparison with HI and UV absorption line data to be 14.5±0.7 Myr. We further predict the 0.4merging of the two bubbles in about 3 Myr from now, when the interaction shell starts to fragment. The Local Cloud and its companion HI clouds are the consequence of a dynamical instability in the interaction shell between the Local and the Loop I bubble
    • 

    corecore