219 research outputs found

    MC decomposition and boride formation in a next generation polycrystalline Ni based superalloy during isothermal exposure at 900 °C

    Get PDF
    Detailed microstructural characterisation of phases present in a next generation polycrystalline Ni based superalloy after thermal exposure at 900 °C was carried out, focusing on carbides and borides. Metastable M5B3 precipitated after 32 h had a stoichiometry of (Cr0.7Mo0.2W0.1)5B3 with substitutions with Ni, Co, Nb and Ta. Fine M23C6 (a = 10.62 Å) was overgrown by metastable M5B3, as shown by rigorous TEM-SAD pattern investigation. The borides were eventually dominated by Mo rich M3B2, at the apparent expense of MC. Decomposition of MC was confirmed; it transformed sequentially to γ and then γ΄. The primary driving force for the MC decomposition was attributed to γ΄ precipitation, increasing its fraction to the thermodynamic equilibrium at 900 °C

    Highly Facet-reflection Immune 53GBaud EML for 800G Artificial Intelligence Optical Transceivers

    Get PDF
    We developed a facet-reflection immune 53GBaud electro-absorption modulated laser (EML) for 800G artificial intelligence (AI) optical network. An ultra-low anti-reflection (AR) coating reflectivity of 2x10-5 has been demonstrated for straight waveguide. Based on Hakki-Paoli method, we characterized the ultra-low AR using the ripple test technique. Such ultra-low AR is critical in achieving excellent eye pattern and optical transmission for 800G AI supercomputing

    Gravitational anomalies signaling the breakdown of classical gravity

    Full text link
    Recent observations for three types of astrophysical systems severely challenge the GR plus dark matter scenario, showing a phenomenology which is what modified gravity theories predict. Stellar kinematics in the outskirts of globular clusters show the appearance of MOND type dynamics on crossing the a0a_{0} threshold. Analysis shows a ``Tully-Fisher'' relation in these systems, a scaling of dispersion velocities with the fourth root of their masses. Secondly, an anomaly has been found at the unexpected scales of wide binaries in the solar neighbourhood. Binary orbital velocities cease to fall along Keplerian expectations, and settle at a constant value, exactly on crossing the a0a_{0} threshold. Finally, the inferred infall velocity of the bullet cluster is inconsistent with the standard cosmological scenario, where much smaller limit encounter velocities appear. This stems from the escape velocity limit present in standard gravity; the ``bullet'' should not hit the ``target'' at more than the escape velocity of the joint system, as it very clearly did. These results are consistent with extended gravity, but would require rather contrived explanations under GR, each. Thus, observations now put us in a situation where modifications to gravity at low acceleration scales cease to be a matter of choice, to now become inevitable.Comment: 10 pages, 5 figures, Astrophysics and Space Science Proceedings 38, 4

    Wide binaries as a critical test of Classical Gravity

    Full text link
    Modified gravity scenarios where a change of regime appears at acceleration scales a<a0a<a_{0} have been proposed. Since for 1M1 M_{\odot} systems the acceleration drops below a0a_{0} at scales of around 7000 AU, a statistical survey of wide binaries with relative velocities and separations reaching 10410^{4} AU and beyond should prove useful to the above debate. We apply the proposed test to the best currently available data. Results show a constant upper limit to the relative velocities in wide binaries which is independent of separation for over three orders of magnitude, in analogy with galactic flat rotation curves in the same a<a0a<a_{0} acceleration regime. Our results are suggestive of a breakdown of Kepler's third law beyond aa0a \approx a_{0} scales, in accordance with generic predictions of modified gravity theories designed not to require any dark matter at galactic scales and beyond.Comment: accepted for publication in EPJ

    Multicast in Multi-channel Wireless Mesh Networks

    Full text link

    Knowledge-based energy functions for computational studies of proteins

    Full text link
    This chapter discusses theoretical framework and methods for developing knowledge-based potential functions essential for protein structure prediction, protein-protein interaction, and protein sequence design. We discuss in some details about the Miyazawa-Jernigan contact statistical potential, distance-dependent statistical potentials, as well as geometric statistical potentials. We also describe a geometric model for developing both linear and non-linear potential functions by optimization. Applications of knowledge-based potential functions in protein-decoy discrimination, in protein-protein interactions, and in protein design are then described. Several issues of knowledge-based potential functions are finally discussed.Comment: 57 pages, 6 figures. To be published in a book by Springe

    Precise Measurements of Beam Spin Asymmetries in Semi-Inclusive π0\pi^0 production

    Get PDF
    We present studies of single-spin asymmetries for neutral pion electroproduction in semi-inclusive deep-inelastic scattering of 5.776 GeV polarized electrons from an unpolarized hydrogen target, using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility. A substantial sinϕh\sin \phi_h amplitude has been measured in the distribution of the cross section asymmetry as a function of the azimuthal angle ϕh\phi_h of the produced neutral pion. The dependence of this amplitude on Bjorken xx and on the pion transverse momentum is extracted with significantly higher precision than previous data and is compared to model calculations.Comment: to be submitted PL

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Treatment Outcomes of Patients With Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis According to Drug Susceptibility Testing to First- and Second-line Drugs: An Individual Patient Data Meta-analysis

    Get PDF
    The clinical validity of drug susceptibility testing (DST) for pyrazinamide, ethambutol, and second-line antituberculosis drugs is uncertain. In an individual patient data meta-analysis of 8955 patients with confirmed multidrug-resistant tuberculosis, DST results for these drugs were associated with treatment outcome
    corecore