955 research outputs found

    Constraints on the Stellar/Sub-stellar Mass Function in the Inner Orion Nebula Cluster

    Get PDF
    We present the results of a 0.5-0.9" FWHM imaging survey at K (2.2 micron) and H (1.6 micron) covering 5.1' x 5.1' centered on Theta 1C Ori, the most massive star in the Orion Nebula Cluster (ONC). At the age and distance of this cluster, and in the absence of extinction, the hydrogen burning limit (0.08 Mo) occurs at K~13.5 mag while an object of mass 0.02 Mo has K~16.2 mag. Our photometry is complete for source detection at the 7 sigma level to K~17.5 mag and thus is sensitive to objects as low-mass as 0.02 Mo seen through visual extinction values as high as 10 magnitudes. We use the observed magnitudes, colors, and star counts to constrain the shape of the inner ONC stellar mass function across the hydrogen burning limit. After determining the stellar age and near-infrared excess properties of the optically visible stars in this same inner ONC region, we present a new technique that incorporates these distributions when extracting the mass function from the observed density of stars in the K-(H-K) diagram. We find that our data are inconsistent with a mass function that rises across the stellar/sub-stellar boundary. Instead, we find that the most likely form of the inner ONC mass function is one that rises to a peak around 0.15 Mo, and then declines across the hydrogen-burning limit with slope N(log M) ~ M^(0.57+/-0.05). We emphasize that our conclusions apply to the inner 0.71 pc x 0.71 pc of the ONC only; they may not apply to the ONC as a whole where some evidence for general mass segregation has been found.Comment: Accepted for publication in the Astrophysical Journal. Preprints/tables also available at http://phobos.caltech.edu/~jmc/papers/onc

    UV excess measures of accretion onto young very low-mass stars and brown dwarfs

    Get PDF
    Low-resolution spectra from 3000-9000 AA of young low-mass stars and brown dwarfs were obtained with LRIS on Keck I. The excess UV and optical emission arising in the Balmer and Paschen continua yields mass accretion rates ranging from 2e-12 to 1e-8 Mo/yr. These results are compared with {\it HST}/STIS spectra of roughly solar-mass accretors with accretion rates that range from 2e-10 to 5e-8 Mo/yr. The weak photospheric emission from M-dwarfs at <4000 A leads to a higher contrast between the accretion and photospheric emission relative to higher-mass counterparts. The mass accretion rates measured here are systematically 4-7 times larger than those from H-alpha emission line profiles, with a difference that is consistent with but unlikely to be explained by the uncertainty in both methods. The accretion luminosity correlates well with many line luminosities, including high Balmer and many He I lines. Correlations of the accretion rate with H-alpha 10% width and line fluxes show a large amount of scatter. Our results and previous accretion rate measurements suggest that accretion rate is proportional to M^(1.87+/-0.26) for accretors in the Taurus Molecular Cloud.Comment: 13 pages text, 15 tables, 14 figures. Accepted by Ap

    The photometric evolution of dissolving star clusters I: First predictions

    Full text link
    We calculated the broad-band photometric evolution of unresolved star clusters, including the preferential loss of low-mass stars due to mass segregation. The stellar mass function of a cluster evolves due to three effects: (a) the evolution of massive stars; (b) early tidal effects reduce the mass function independently of the stellar mass; (c) after mass segregation has completed, tidal effects preferentially remove the lowest-mass stars from the cluster. Results: (1) During the first ~40% of the lifetime of a cluster the cluster simply gets fainter due to the loss of stars by tidal effects. (2) Between ~40 and ~80% of its lifetime the cluster gets bluer due to the loss of low-mass stars. This will result in an underestimate of the age of clusters if standard cluster evolution models are used (0.15 -- 0.5 dex). (3) After ~80% of the total lifetime of a cluster it will rapidly get redder. This is because stars at the low-mass end of the main sequence, which are preferentially lost, are bluer than the AGB stars that dominate the light at long wavelengths, resulting in an age overestimate. (4) Clusters with mass segregation and the preferential loss of low-mass stars evolve along almost the same tracks in colour-colour diagrams as clusters without mass segregation. Therefore it will be difficult to distinguish this effect from that due to the cluster age for unresolved clusters, unless the total lifetime of the clusters can be estimated. (5) The changes in the colour evolution of unresolved clusters due to the preferential loss of low-mass stars will affect the determination of the SFHs. (6) The preferential loss of low-mass stars might explain the presence of old (~13 Gyr) clusters in NGC 4365 which are photometrically disguised as intermediate-age clusters (2 - 5 Gyr). [Abridged]Comment: accepted for publication in A&

    Binary Stars in the Orion Nebula Cluster

    Get PDF
    We report on a high-spatial-resolution survey for binary stars in the periphery of the Orion Nebula Cluster, at 5 - 15 arcmin (0.65 - 2 pc) from the cluster center. We observed 228 stars with adaptive optics systems, in order to find companions at separations of 0.13" - 1.12" (60 - 500 AU), and detected 13 new binaries. Combined with the results of Petr (1998), we have a sample of 275 objects, about half of which have masses from the literature and high probabilities to be cluster members. We used an improved method to derive the completeness limits of the observations, which takes into account the elongated point spread function of stars at relatively large distances from the adaptive optics guide star. The multiplicity of stars with masses >2 M_sun is found to be significantly larger than that of low-mass stars. The companion star frequency of low-mass stars is comparable to that of main-sequence M-dwarfs, less than half that of solar-type main-sequence stars, and 3.5 to 5 times lower than in the Taurus-Auriga and Scorpius-Centaurus star-forming regions. We find the binary frequency of low-mass stars in the periphery of the cluster to be the same or only slightly higher than for stars in the cluster core (<3 arcmin from theta1C Ori). This is in contrast to the prediction of the theory that the low binary frequency in the cluster is caused by the disruption of binaries due to dynamical interactions. There are two ways out of this dilemma: Either the initial binary frequency in the Orion Nebula Cluster was lower than in Taurus-Auriga, or the Orion Nebula Cluster was originally much denser and dynamically more active.Comment: 20 page

    The FUV spectrum of TW Hya. I. Observations of H2_2 Fluorescence

    Get PDF
    We observed the classical T Tauri star TW Hya with \textit{HST}/STIS using the E140M grating, from 1150--1700 \AA, with the E230M grating, from 2200--2900 \AA, and with \FUSE from 900--1180 \AA. Emission in 143 Lyman-band H2_2 lines representing 19 progressions dominates the spectral region from 1250--1650 \AA. The total H2_2 emission line flux is 1.94×10121.94 \times 10^{-12} erg cm2^{-2} s1^{-1}, which corresponds to 1.90×1041.90\times10^{-4} LL_\odot at TW Hya's distance of 56 pc. A broad stellar \Lya line photoexcites the H2_2 from excited rovibrational levels of the ground electronic state to excited electronic states. The \ion{C}{2} 1335 \AA doublet, \ion{C}{3} 1175 \AA\ multiplet, and \ion{C}{4} 1550 \AA doublet also electronically excite H2_2. The velocity shift of the H2_2 lines is consistent with the photospheric radial velocity of TW Hya, and the emission is not spatially extended beyond the 0\farcs05 resolution of \textit{HST}. The H2_2 lines have an intrinsic FWHM of 11.91±0.1611.91\pm0.16 \kms. One H2_2 line is significantly weaker than predicted by this model because of \ion{C}{2} wind absorption. We also do not observe any H2_2 absorption against the stellar \Lya profile. From these results, we conclude that the H2_2 emission is more consistent with an origin in a disk rather than in an outflow or circumstellar shell. We also analyze the hot accretion-region lines (e.g., \ion{C}{4}, \ion{Si}{4}, \ion{O}{6}) of TW Hya, which are formed at the accretion shock, and discuss some reasons why Si lines appear significantly weaker than other TR region lines.Comment: accepted by ApJ, 42 pages -- 20 text, 11 figure

    YSOVAR: Mid-IR variability in the star forming region Lynds 1688

    Get PDF
    The emission from young stellar objects (YSOs) in the mid-IR is dominated by the inner rim of their circumstellar disks. We present an IR-monitoring survey of about 800 objects in the direction of the Lynds 1688 (L1688) star forming region over four visibility windows spanning 1.6 years using the \emph{Spitzer} space telescope in its warm mission phase. Among all lightcurves, 57 sources are cluster members identified based on their spectral-energy distribution and X-ray emission. Almost all cluster members show significant variability. The amplitude of the variability is larger in more embedded YSOs. Ten out of 57 cluster members have periodic variations in the lightcurves with periods typically between three and seven days, but even for those sources, significant variability in addition to the periodic signal can be seen. No period is stable over 1.6 years. Non-periodic lightcurves often still show a preferred timescale of variability which is longer for more embedded sources. About half of all sources exhibit redder colors in a fainter state. This is compatible with time-variable absorption towards the YSO. The other half becomes bluer when fainter. These colors can only be explained with significant changes in the structure of the inner disk. No relation between mid-IR variability and stellar effective temperature or X-ray spectrum is found.Comment: accepted by ApJ, 24 pages, 17 figure

    Infrared nanoscopy of Dirac plasmons at the graphene-SiO2 interface

    Full text link
    We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plane component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.Comment: 12 pages, 4 figure

    Young Stellar Object Variability (YSOVAR): Long Timescale Variations in the Mid-Infrared

    Full text link
    The YSOVAR (Young Stellar Object VARiability) Spitzer Space Telescope observing program obtained the first extensive mid-infrared (3.6 & 4.5 um) time-series photometry of the Orion Nebula Cluster plus smaller footprints in eleven other star-forming cores (AFGL490, NGC1333, MonR2, GGD 12-15, NGC2264, L1688, Serpens Main, Serpens South, IRAS 20050+2720, IC1396A, and Ceph C). There are ~29,000 unique objects with light curves in either or both IRAC channels in the YSOVAR data set. We present the data collection and reduction for the Spitzer and ancillary data, and define the "standard sample" on which we calculate statistics, consisting of fast cadence data, with epochs about twice per day for ~40d. We also define a "standard sample of members", consisting of all the IR-selected members and X-ray selected members. We characterize the standard sample in terms of other properties, such as spectral energy distribution shape. We use three mechanisms to identify variables in the fast cadence data--the Stetson index, a chi^2 fit to a flat light curve, and significant periodicity. We also identified variables on the longest timescales possible of ~6 years, by comparing measurements taken early in the Spitzer mission with the mean from our YSOVAR campaign. The fraction of members in each cluster that are variable on these longest timescales is a function of the ratio of Class I/total members in each cluster, such that clusters with a higher fraction of Class I objects also have a higher fraction of long-term variables. For objects with a YSOVAR-determined period and a [3.6]-[8] color, we find that a star with a longer period is more likely than those with shorter periods to have an IR excess. We do not find any evidence for variability that causes [3.6]-[4.5] excesses to appear or vanish within our data; out of members and field objects combined, at most 0.02% may have transient IR excesses.Comment: Accepted to AJ; 38 figures, 93 page

    Star formation in bright-rimmed clouds and cluster associated with W5 E H{\sc ii} region

    Get PDF
    The aim of this paper is to present the results of photometric investigations of the central cluster of the W5 E region as well as a follow-up study of the triggered star formation in and around bright-rimmed clouds (BRCs). We have carried out wide field UBVIcUBVI_c and deep VIcVI_c photometry of the W5 E H{\sc ii} region. A distance of \sim2.1 kpc and a mean age of \sim1.3 Myr have been obtained for the central cluster. The young stellar objects (YSOs) associated with the region are identified on the basis of near-infrared and mid-infrared observations. We confirmed our earlier results that the average age of the YSOs lying on/inside the rim are younger than those lying outside the rim. The global distribution of the YSOs shows an aligned distribution from the ionising source to the BRCs. These facts indicate that a series of radiation driven implosion processes proceeded from near the central ionising source towards the periphery of the W5 E H{\sc ii} region. We found that, in general, the age distributions of the Class II and Class III sources are the same. This result is apparently in contradiction with the conclusion by Bertout, Siess & Cabrit (2007) and Chauhan et al. (2009) that classical T Tauri stars evolve to weak-line T Tauri stars. The initial mass function of the central cluster region in the mass range 0.4M/M300.4 \le M/M_\odot \le 30 can be represented by Γ=1.29±0.03\Gamma = -1.29 \pm 0.03. The cumulative mass functions indicate that in the mass range 0.2M/M0.80.2 \le M/M_\odot \le 0.8, the cluster region and BRC NW have more low mass YSOs in comparison to BRCs 13 and 14.Comment: 43 pages, 17 figures, accepted for publication in MNRA
    corecore