175 research outputs found

    Rocket- and aircraft-borne trace gas measurements in the winter polar stratosphere

    Get PDF
    In January and February 1987 stratospheric rocket- and aircraft-borne trace gas measurements were done in the North Polar region using ACIMS (Active Chemical Ionization Mass Spectrometry) and PACIMS (PAssive Chemical Ionization Mass Spectrometry) instruments. The rocket was launched at ESRANGE (European Sounding Rocket Launching Range) (68 N, 21 E, Northern Sweden) and the twin-jet research aircraft operated by the DFVLR (Deutsche Forschungs- und Versuchs-anstalt fuer Luft- und Raumfahrt), and equipped with a mass spectrometer laboratory was stationed at Kiruna airport. Various stratospheric trace gases were measured including nitric acid, sulfuric acid, non-methane hydrocarbons (acetone, hydrogen cyanide, acetonitrile, methanol etc.), and ambient cluster ions. The experimental data is presented and possible implications for polar stratospheric ozone discussed

    The UV-A and visible solar irradiance spectrum: inter-comparison of absolutely calibrated, spectrally medium resolution solar irradiance spectra from balloon- and satellite-borne measurements

    No full text
    International audienceWithin the framework of the ENVISAT/-SCIAMACHY satellite validation, solar irradiance spectra are absolutely measured at moderate resolution in the UV/visible spectral range (in the UV from 316.7–418 nm and the visible from 400–652 nm at a full width half maximum resolution of 0.55 nm and 1.48 nm, respectively) from aboard the azimuth-controlled LPMA/DOAS balloon gondola at around 32 km balloon float altitude. After accounting for the atmospheric extinction due to Rayleigh scattering and gaseous absorption (O3, and NO2), the measured solar spectra are compared with previous observations. Our solar irradiance is +1.6% larger than the re-calibrated Kurucz et al. (1984) solar spectrum (Fontenla et al., 1999, called MODTRAN 3.5) in the visible spectral range (435–650 nm), +1.5% larger in the (370–415 nm) wavelength interval, but -4% smaller in the UV spectral range (316.7–370 nm), when the Kurucz spectrum is convolved to the spectral resolution of our instrument. The same comparison with the SOLSPEC solar spectrum (Thuillier et al., 1997, 1998a, b) confirms the somewhat larger solar irradiance (+1.7%) measured by the balloon instrument from 435–500 nm, but not from 500–650 nm, where the SOLSPEC is -1.3% lower than MODTRAN 3.5. Comparison of the SCIAMACHY solar spectrum from channels 1 to 4 (– re-calibrated by the University of Bremen –) with MODTRAN 3.5 indicates an agreement of +0.2% in the visible spectral range (435–585 nm). With this calibration, the SCIAMACHY solar spectrum is congruent with the balloon observations (-1%) in the 316.7–370 nm wavelength range, but both are up to -5%/-3% smaller than MODTRAN 3.5 and SOLSPEC, respectively. In agreement with findings of Skupin et al. (2002) our study emphasizes that the present ESA SCIAMACHY level 1 calibration is systematically +15% larger in the considered wavelength intervals when compared to all available other solar irradiance measurements

    Retrieval of nitrogen dioxide stratospheric profiles from ground-based zenith-sky UV-visible observations: validation of the technique through correlative comparisons

    Get PDF
    A retrieval algorithm based on the Optimal Estimation Method (OEM) has been developed in order to provide vertical distributions of NO<sub>2</sub> in the stratosphere from ground-based (GB) zenith-sky UV-visible observations. It has been applied to observational data sets from the NDSC (Network for Detection of Stratospheric Change) stations of Harestua (60&deg; N, 10&deg; E) and And&#248;ya (69&deg; N, 16&deg; E) in Norway. The information content and retrieval errors have been analyzed following a formalism used for characterizing ozone profiles retrieved from solar infrared absorption spectra. In order to validate the technique, the retrieved NO<sub>2</sub> vertical profiles and columns have been compared to correlative balloon and satellite observations. Such extensive validation of the profile and column retrievals was not reported in previously published work on the profiling from GB UV-visible measurements. A good agreement - generally better than 25% - has been found with the SAOZ (Syst&#232;me d'Analyse par Observations Z&#233;nithales) and DOAS (Differential Optical Absorption Spectroscopy) balloons. A similar agreement has been reached with correlative satellite data from the HALogen Occultation Experiment (HALOE) and Polar Ozone and Aerosol Measurement (POAM) III instruments above 25km of altitude. Below 25km, a systematic underestimation - by up to 40% in some cases - of both HALOE and POAM III profiles by our GB profile retrievals has been observed, pointing out more likely a limitation of both satellite instruments at these altitudes. We have concluded that our study strengthens our confidence in the reliability of the retrieval of vertical distribution information from GB UV-visible observations and offers new perspectives in the use of GB UV-visible network data for validation purposes

    Modification of a conventional photolytic converter for improving aircraft measurements of NO2_{2} via chemiluminescence

    Get PDF
    Nitrogen oxides (NOx_{x}≡NO+NO2_{2}) are centrally involved in the photochemical processes taking place in the Earth\u27s atmosphere. Measurements of NO2_{2}, particularly in remote areas where concentrations are of the order of parts per trillion by volume (pptv), are still a challenge and subject to extensive research. In this study, we present NO2_{2} measurements via photolysis–chemiluminescence during the research aircraft campaign CAFE Africa (Chemistry of the Atmosphere – Field Experiment in Africa) 2018 around Cabo Verde and the results of laboratory experiments to characterize the photolytic converter used. We find the NO2_{2} reservoir species MPN (methyl peroxy nitrate) to produce the only relevant thermal interference in the converter under the operating conditions during CAFE Africa. We identify a memory effect within the conventional photolytic converter (type 1) associated with high NO concentrations and rapidly changing water vapor concentrations, accompanying changes in altitude during aircraft measurements, which is due to the porous structure of the converter material. As a result, NO2_{2} artifacts, which are amplified by low conversion efficiencies, and a varying instrumental background adversely affect the NO2_{2} measurements. We test and characterize an alternative photolytic converter (type 2) made from quartz glass, which improves the reliability of NO2_{2} measurements in laboratory and field studies

    Validation and data characteristics of methane and nitrous oxide profiles observed by MIPAS and processed with Version 4.61 algorithm

    Get PDF
    The ENVISAT validation programme for the atmospheric instruments MIPAS, SCIAMACHY and GOMOS is based on a number of balloon-borne, aircraft, satellite and ground-based correlative measurements. In particular the activities of validation scientists were coordinated by ESA within the ENVISAT Stratospheric Aircraft and Balloon Campaign or ESABC. As part of a series of similar papers on other species [this issue] and in parallel to the contribution of the individual validation teams, the present paper provides a synthesis of comparisons performed between MIPAS CH4 and N2O profiles produced by the current ESA operational software (Instrument Processing Facility version 4.61 or IPF v4.61, full resolution MIPAS data covering the period 9 July 2002 to 26 March 2004) and correlative measurements obtained from balloon and aircraft experiments as well as from satellite sensors or from ground-based instruments. In the middle stratosphere, no significant bias is observed between MIPAS and correlative measurements, and MIPAS is providing a very consistent and global picture of the distribution of CH4 and N2O in this region. In average, the MIPAS CH4 values show a small positive bias in the lower stratosphere of about 5%. A similar situation is observed for N2O with a positive bias of 4%. In the lower stratosphere/upper troposphere (UT/LS) the individual used MIPAS data version 4.61 still exhibits some unphysical oscillations in individual CH4 and N2O profiles caused by the processing algorithm (with almost no regularization). Taking these problems into account, the MIPAS CH4 and N2O profiles are behaving as expected from the internal error estimation of IPF v4.61 and the estimated errors of the correlative measurements

    Balloon-borne stratospheric BrO measurements: comparison with Envisat/SCIAMACHY BrO limb profiles

    Get PDF
    International audienceFor the first time, results of four stratospheric BrO profiling instruments, are presented and compared with reference to the SLIMCAT 3-dimensional chemical transport model (3-D CTM). Model calculations are used to infer a BrO profile validation set, measured by 3 different balloon sensors, for the new Envisat/SCIAMACHY (ENVIronment SATellite/SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) satellite instrument. The balloon observations include (a) balloon-borne in situ resonance fluorescence detection of BrO (Triple), (b) balloon-borne solar occultation DOAS measurements (Differential Optical Absorption Spectroscopy) of BrO in the UV, and (c) BrO profiling from the solar occultation SAOZ (Systeme d'Analyse par Observation Zenithale) balloon instrument. Since stratospheric BrO is subject to considerable diurnal variation and none of the measurements are performed close enough in time and space for a direct comparison, all balloon observations are considered with reference to outputs from the 3-D CTM. The referencing is performed by forward and backward air mass trajectory calculations to match the balloon with the satellite observations. The diurnal variation of BrO is considered by 1-D photochemical model calculation along the trajectories. The 1-D photochemical model is initialised with output data of the 3-D model with additional constraints on the vertical transport, the total amount and photochemistry of stratospheric bromine as given by the various balloon observations. Total [Bry]=(20.1±2.5) pptv obtained from DOAS BrO observations at mid-latitudes in 2003, serves as an upper limit of the comparison. Most of the balloon observations agree with the photochemical model predictions within their given error estimates. First retrieval exercises of BrO limb profiling from the SCIAMACHY satellite instrument on average agree to around 20% with the photochemically-corrected balloon observations of the remote sensing instruments (SAOZ and DOAS). An exception is the in situ Triple profile, in which the balloon and satellite data mostly does not agree within the given errors. In general, the satellite measurements show systematically higher values below 25 km than the balloon data and a change in profile shape above about 25 km

    Constraining the N2O5 UV absorption cross section from spectroscopic trace gas measurements in the tropical mid-stratosphere

    Get PDF
    The absorption cross section of N2O5, σN2O5(λ, T), which is known from laboratory measurements with the uncertainty of a factor of 2 (Table 4-2 in (Jet Propulsion Laboratory) JPL-2011; the spread in laboratory data, however, points to an uncertainty in the range of 25 to 30%, Sander et al., 2011), was investigated by balloon-borne observations of the relevant trace gases in the tropical mid-stratosphere. The method relies on the observation of the diurnal variation of NO2 by limb scanning DOAS (differential optical absorption spectroscopy) measurements (Weidner et al., 2005; Kritten et al., 2010), supported by detailed photochemical modelling of NOy (NOx(= NO + NO2) + NO3 + 2N2O5 + ClONO2 + HO2NO2 + BrONO2 + HNO3) photochemistry and a non-linear least square fitting of the model result to the NO2 observations. Simulations are initialised with O3 measured by direct sun observations, the NOy partitioning from MIPAS-B (Michelson Interferometer for Passive Atmospheric Sounding – Balloon-borne version) observations in similar air masses at night-time, and all other relevant species from simulations of the SLIMCAT (Single Layer Isentropic Model of Chemistry And Transport) chemical transport model (CTM). Best agreement between the simulated and observed diurnal increase of NO2 is found if the σN2O5(λ, T) is scaled by a factor of 1.6 ± 0.8 in the UV-C (200–260 nm) and by a factor of 0.9 ± 0.26 in the UV-B/A (260–350 nm), compared to current recommendations. As a consequence, at 30 km altitude, the N2O5 lifetime against photolysis becomes a factor of 0.77 shorter at solar zenith angle (SZA) of 30° than using the recommended σN2O5(λ, T), and stays more or less constant at SZAs of 60°. Our scaled N2O5 photolysis frequency slightly reduces the lifetime (0.2–0.6%) of ozone in the tropical mid- and upper stratosphere, but not to an extent to be important for global ozone

    Modelling the chemistry and transport of bromoform within a sea breeze driven convective system during the SHIVA Campaign

    Get PDF
    We carry out a case study of the transport and chemistry of bromoform and its product gases (PGs) in a sea breeze driven convective episode on 19 November 2011 along the North West coast of Borneo during the "Stratospheric ozone: Halogen Impacts in a Varying Atmosphere" (SHIVA) campaign. We use ground based, ship, aircraft and balloon sonde observations made during the campaign, and a 3-D regional online transport and chemistry model capable of resolving clouds and convection explicitly that includes detailed bromine chemistry. The model simulates the temperature, wind speed, wind direction fairly well for the most part, and adequately captures the convection location, timing, and intensity. The simulated transport of bromoform from the boundary layer up to 12 km compares well to aircraft observations to support our conclusions. The model makes several predictions regarding bromine transport from the boundary layer to the level of convective detrainment (11 to 12 km). First, the majority of bromine undergoes this transport as bromoform. Second, insoluble organic bromine carbonyl species are transported to between 11 and 12 km, but only form a small proportion of the transported bromine. Third, soluble bromine species, which include bromine organic peroxides, hydrobromic acid (HBr), and hypobromous acid (HOBr), are washed out efficiently within the core of the convective column. Fourth, insoluble inorganic bromine species (principally Br2) are not washed out of the convective column, but are also not transported to the altitude of detrainment in large quantities. We expect that Br2 will make a larger relative contribution to the total vertical transport of bromine atoms in scenarios with higher CHBr3 mixing ratios in the boundary layer, which have been observed in other regions. Finally, given the highly detailed description of the chemistry, transport and washout of bromine compounds within our simulations, we make a series of recommendations about the physical and chemical processes that should be represented in 3-D chemical transport models (CTMs) and chemistry climate models (CCMs), which are the primary theoretical means of estimating the contribution made by CHBr3 and other very short-lived substances (VSLS) to the stratospheric bromine budget

    Airborne observations of peroxy radicals during the EMeRGe campaign in Europe

    Get PDF
    In this study, airborne measurements of the sum of hydroperoxyl (HO2) and organic peroxy (RO2) radicals that react with nitrogen monoxide (NO) to produce nitrogen dioxide (NO2), coupled with actinometry and other key trace gases measurements, have been used to test the current understanding of the fast photochemistry in the outflow of major population centres. The measurements were made during the airborne campaign of the EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional to Global scales) project in Europe on board the High Altitude and Long Range Research Aircraft (HALO). The measurements of RO on HALO were made using the in situ instrument Peroxy Radical Chemical Enhancement and Absorption Spectrometer (PeRCEAS). RO is to a good approximation the sum of peroxy radicals reacting with NO to produce NO2. RO mixing ratios up to 120 pptv were observed in air masses of different origins and composition under different local actinometric conditions during seven HALO research flights in July 2017 over Europe. Radical production rates were estimated using knowledge of the photolysis frequencies and the precursor concentrations measured on board, as well as the relevant rate coefficients. Generally, high concentrations were measured in air masses with high production rates. In the air masses investigated, is primarily produced by the reaction of O1D with water vapour and the photolysis of nitrous acid (HONO) and of the oxygenated volatile organic compounds (OVOCs, e.g. formaldehyde (HCHO) and glyoxal (CHOCHO)). Due to their short lifetime in most environments, the RO concentrations are expected to be in a photostationary steady state (PSS), i.e. a balance between production and loss rates is assumed. The production and loss rates and the suitability of PSS assumptions to estimate the mixing ratios and variability during the airborne observations are discussed. The PSS assumption for is considered robust enough to calculate mixing ratios for most conditions encountered in the air masses measured. The similarities and discrepancies between measured and PSS calculated mixing ratios are discussed. The dominant terminating processes for in the pollution plumes measured up to 2000 m are the formation of nitrous acid, nitric acid, and organic nitrates. Above 2000 m, HO2–HO2 and HO2–RO2 reactions dominate the removal. calculations by the PSS analytical expression inside the pollution plumes probed often underestimated the measurements. The underestimation is attributed to the limitations of the PSS equation used for the analysis. In particular, this expression does not account for the yields of from the oxidation and photolysis of volatile organic compounds, VOCs, and OVOCs other than those measured during the EMeRGe research flights in Europe. In air masses with NO mixing ratios ≤50 pptv and low ratios, the measured is overestimated by the analytical expression. This may be caused by the formation of H2O and O2 from OH and HO2, being about 4 times faster than the rate of the OH oxidation reaction of the dominant OVOCs considered

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX): High-Altitude Aircraft Measurements in the Tropical Western Pacific

    Get PDF
    The February through March 2014 deployment of the NASA Airborne Tropical TRopopause EXperiment (ATTREX) provided unique in situ measurements in the western Pacific Tropical Tropopause Layer (TTL). Six flights were conducted from Guam with the long-range, high-altitude, unmanned Global Hawk aircraft. The ATTREX Global Hawk payload provided measurements of water vapor, meteorological conditions, cloud properties, tracer and chemical radical concentrations, and radiative fluxes. The campaign was partially coincident with the CONTRAST and CAST airborne campaigns based in Guam using lower-altitude aircraft (see companion articles in this issue). The ATTREX dataset is being used for investigations of TTL cloud, transport, dynamical, and chemical processes as well as for evaluation and improvement of global-model representations of TTL processes. The ATTREX data is openly available at https:espoarchive.nasa.gov
    corecore