170 research outputs found

    Cytochrome P450 CYP1B1 activity in renal cell carcinoma

    Get PDF
    Renal cell carcinoma (RCC) is the most common malignancy of the kidney and has a poor prognosis due to its late presentation and resistance to current anticancer drugs. One mechanism of drug resistance, which is potentially amenable to therapeutic intervention, is based on studies in our laboratory. CYP1B1 is a cytochrome P450 enzyme overexpressed in a variety of malignant tumours. Our studies are now elucidating a functional role for CYP1B1 in drug resistance. Cytochrome P450 reductase (P450R) is required for optimal metabolic activity of CYP1B1. Both CYP1B1 and P450R can catalyse the biotransformation of anticancer drugs at the site of the tumour. In this investigation, we determined the expression of CYP1B1 and P450R in samples of normal kidney and RCC (11 paired normal and tumour and a further 15 tumour samples). The O-deethylation of ethoxyresorufin to resorufin was used to measure CYP1B1 activity in RCC. Cytochrome P450 reductase activity was determined by following the reduction of cytochrome c at 550 nm. The key finding of this study was the presence of active CYP1B1 in 70% of RCC. Coincubation with the CYP1B1 inhibitor alpha-naphthoflavone (10nM) inhibited this activity. No corresponding CYP1B1 activity was detected in any of the normal tissue examined (n = 11). Measurable levels of active P450R were determined in all normal (n = 11) and tumour samples (n = 26). The presence of detectable CYP1B1, which is capable of metabolising anticancer drugs in tumour cells, highlights a novel target for therapeutic intervention

    Synthetic lethality: a framework for the development of wiser cancer therapeutics

    Get PDF
    The challenge in medical oncology has always been to identify compounds that will kill, or at least tame, cancer cells while leaving normal cells unscathed. Most chemotherapeutic agents in use today were selected primarily for their ability to kill rapidly dividing cancer cells grown in cell culture and in mice, with their selectivity determined empirically during subsequent animal and human testing. Unfortunately, most of the drugs developed in this way have relatively low therapeutic indices (low toxic dose relative to the therapeutic dose). Recent advances in genomics are leading to a more complete picture of the range of mutations, both driver and passenger, present in human cancers. Synthetic lethality provides a conceptual framework for using this information to arrive at drugs that will preferentially kill cancer cells relative to normal cells. It also provides a possible way to tackle 'undruggable' targets. Two genes are synthetically lethal if mutation of either gene alone is compatible with viability but simultaneous mutation of both genes leads to death. If one is a cancer-relevant gene, the task is to discover its synthetic lethal interactors, because targeting these would theoretically kill cancer cells mutant in the cancer-relevant gene while sparing cells with a normal copy of that gene. All cancer drugs in use today, including conventional cytotoxic agents and newer 'targeted' agents, target molecules that are present in both normal cells and cancer cells. Their therapeutic indices almost certainly relate to synthetic lethal interactions, even if those interactions are often poorly understood. Recent technical advances enable unbiased screens for synthetic lethal interactors to be undertaken in human cancer cells. These approaches will hopefully facilitate the discovery of safer, more efficacious anticancer drugs that exploit vulnerabilities that are unique to cancer cells by virtue of the mutations they have accrued during tumor progression

    Anti-cancer drug validation: the contribution of tissue engineered models

    Get PDF
    Abstract Drug toxicity frequently goes concealed until clinical trials stage, which is the most challenging, dangerous and expensive stage of drug development. Both the cultures of cancer cells in traditional 2D assays and animal studies have limitations that cannot ever be unraveled by improvements in drug-testing protocols. A new generation of bioengineered tumors is now emerging in response to these limitations, with potential to transform drug screening by providing predictive models of tumors within their tissue context, for studies of drug safety and efficacy. Considering the NCI60, a panel of 60 cancer cell lines representative of 9 different cancer types: leukemia, lung, colorectal, central nervous system (CNS), melanoma, ovarian, renal, prostate and breast, we propose to review current Bstate of art^ on the 9 cancer types specifically addressing the 3D tissue models that have been developed and used in drug discovery processes as an alternative to complement their studyThis article is a result of the project FROnTHERA (NORTE-01-0145-FEDER-000023), supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). This article was also supported by the EU Framework Programme for Research and Innovation HORIZON 2020 (H2020) under grant agreement n° 668983 — FoReCaST. FCT distinction attributed to Joaquim M. Oliveira (IF/00423/2012) and Vitor M. Correlo (IF/01214/2014) under the Investigator FCT program is also greatly acknowledged.info:eu-repo/semantics/publishedVersio

    CD70 (TNFSF7) is expressed at high prevalence in renal cell carcinomas and is rapidly internalised on antibody binding

    Get PDF
    In order to identify potential markers of renal cancer, the plasma membrane protein content of renal cell carcinoma (RCC)-derived cell lines was annotated using a proteomics process. One unusual protein identified at high levels in A498 and 786-O cells was CD70 (TNFSF7), a type II transmembrane receptor normally expressed on a subset of B, T and NK cells, where it plays a costimulatory role in immune cell activation. Immunohistochemical analysis of CD70 expression in multiple carcinoma types demonstrated strong CD70 staining in RCC tissues. Metastatic tissues from eight of 11 patients with clear cell RCC were positive for CD70 expression. Immunocytochemical analysis demonstrated that binding of an anti-CD70 antibody to CD70 endogenously expressed on the surface of A498 and 786-O cell lines resulted in the rapid internalisation of the antibody–receptor complex. Coincubation of the internalising anti-CD70 antibody with a saporin-conjugated secondary antibody before addition to A498 cells resulted in 50% cell killing. These data indicate that CD70 represents a potential target antigen for toxin-conjugated therapeutic antibody treatment of RCC

    Kidney- and Site-Selective Delivery of 5-Fluorouracil Utilizing the Absorption on the Kidney Surface in Rats

    Get PDF
    The present study was undertaken to elucidate the kidney- and site-selective delivery of 5-fluorouracil (5-FU) utilizing the absorption on the kidney surface in rats. An experimental system utilizing a cylindrical diffusion cell attached to the right kidney surface was established. After intravenous administration of 5-FU, the concentration of 5-FU in the right and left kidneys was almost the same and was rapidly eliminated. After right kidney surface application of 5-FU, however, the concentration of 5-FU in the right kidney was significantly higher than in the left kidney and other tissues. The 5-FU concentration in four sites of the right kidney after intravenous administration was almost the same. In contrast, 5-FU was site selectively delivered in the kidney after kidney surface application. The blood concentration of 5-FU was low (<1.7 ÎŒg/ml) until 120 min after kidney surface application. The maximum blood concentration of 5-FU after kidney surface application was much lower than after intravenous administration

    Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018.

    Get PDF
    Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field

    Impact of intracellular ion channels on cancer development and progression

    Get PDF

    Resolution of a Core Problem in Wound Rolls

    No full text
    • 

    corecore