786 research outputs found

    Potential formation sites of super star clusters in ultra-luminous infrared galaxies

    Get PDF
    Recent observational results on high spatial resolution images of ultra-luminous infrared galaxies (ULIGs) have revealed very luminous, young, compact, and heavily obscured super star clusters in their central regions, suggested to be formed by gas-rich major mergers. By using stellar and gaseous numerical simulations of galaxy mergers, we firstly demonstrate that the central regions of ULIGs are the most promising formation sites of super star clusters owing to the rather high gaseous pressure of the interstellar medium. Based on simple analytical arguments, we secondly discuss the possibility that super star clusters in an ULIG can be efficiently transferred into the nuclear region owing to dynamical friction and consequently merge with one another to form a single compact stellar nucleus with a seed massive black hole. We thus suggest that multiple merging between super star clusters formed by nuclear starbursts in the central regions of ULIGs can result in the formation of massive black holes.Comment: 12 pages 4 figures, 2001, accepted by ApJ

    The epsilon Chamaeleontis young stellar group and the characterization of sparse stellar clusters

    Full text link
    We present the outcomes of a Chandra X-ray Observatory snapshot study of five nearby Herbig Ae/Be (HAeBe) stars which are kinematically linked with the Oph-Sco-Cen Association (OSCA). Optical photometric and spectroscopic followup was conducted for the HD 104237 field. The principal result is the discovery of a compact group of pre-main sequence (PMS) stars associated with HD 104237 and its codistant, comoving B9 neighbor epsilon Chamaeleontis AB. We name the group after the most massive member. The group has five confirmed stellar systems ranging from spectral type B9-M5, including a remarkably high degree of multiplicity for HD 104237 itself. The HD 104237 system is at least a quintet with four low mass PMS companions in nonhierarchical orbits within a projected separation of 1500 AU of the HAeBe primary. Two of the low-mass members of the group are actively accreting classical T Tauri stars. The Chandra observations also increase the census of companions for two of the other four HAeBe stars, HD 141569 and HD 150193, and identify several additional new members of the OSCA. We discuss this work in light of several theoretical issues: the origin of X-rays from HAeBe stars; the uneventful dynamical history of the high-multiplicity HD 104237 system; and the origin of the epsilon Cha group and other OSCA outlying groups in the context of turbulent giant molecular clouds. Together with the similar eta Cha cluster, we paint a portrait of sparse stellar clusters dominated by intermediate-mass stars 5-10 Myr after their formation.Comment: Accepted for publication in the Astrophysical Journal. 32 pages and 7 figure

    The WiggleZ Dark Energy Survey: Star-formation in UV-luminous galaxies from their luminosity functions

    Get PDF
    We present the ultraviolet (UV) luminosity function of galaxies from the GALEX Medium Imaging Survey with measured spectroscopic redshifts from the first data release of the WiggleZ Dark Energy Survey. This sample selects galaxies with high star formation rates: at 0.6 < z < 0.9 the median star formation rate is at the upper 95th percentile of optically-selected (r<22.5) galaxies and the sample contains about 50 per cent of all NUV < 22.8, 0.6 < z < 0.9 starburst galaxies within the volume sampled. The most luminous galaxies in our sample (-21.0>M_NUV>-22.5) evolve very rapidly with a number density declining as (1+z)^{5\pm 1} from redshift z = 0.9 to z = 0.6. These starburst galaxies (M_NUV<-21 is approximately a star formation rate of 30 \msuny) contribute about 1 per cent of cosmic star formation over the redshift range z=0.6 to z=0.9. The star formation rate density of these very luminous galaxies evolves rapidly, as (1+z)^{4\pm 1}. Such a rapid evolution implies the majority of star formation in these large galaxies must have occurred before z = 0.9. We measure the UV luminosity function in 0.05 redshift intervals spanning 0.1<z<0.9, and provide analytic fits to the results. At all redshifts greater than z=0.55 we find that the bright end of the luminosity function is not well described by a pure Schechter function due to an excess of very luminous (M_NUV<-22) galaxies. These luminosity functions can be used to create a radial selection function for the WiggleZ survey or test models of galaxy formation and evolution. Here we test the AGN feedback model in Scannapieco et al. (2005), and find that this AGN feedback model requires AGN feedback efficiency to vary with one or more of the following: stellar mass, star formation rate and redshift.Comment: 27 pages; 13 pages without appendices. 22 figures; 11 figures in the main tex

    The WiggleZ Dark Energy Survey: improved distance measurements to z = 1 with reconstruction of the baryonic acoustic feature

    Get PDF
    We present significant improvements in cosmic distance measurements from the WiggleZ Dark Energy Survey, achieved by applying the reconstruction of the baryonic acoustic feature technique. We show using both data and simulations that the reconstruction technique can often be effective despite patchiness of the survey, significant edge effects and shot-noise. We investigate three redshift bins in the redshift range 0.2 < z < 1, and in all three find improvement after reconstruction in the detection of the baryonic acoustic feature and its usage as a standard ruler. We measure model-independent distance measures DV(rsfid/rs) of 1716 ± 83, 2221 ± 101, 2516 ± 86 Mpc (68 per cent CL) at effective redshifts z = 0.44, 0.6, 0.73, respectively, where DV is the volume-averaged distance, and rs is the sound horizon at the end of the baryon drag epoch. These significantly improved 4.8, 4.5 and 3.4 per cent accuracy measurements are equivalent to those expected from surveys with up to 2.5 times the volume of WiggleZ without reconstruction applied. These measurements are fully consistent with cosmologies allowed by the analyses of the Planck Collaboration and the Sloan Digital Sky Survey. We provide the DV(rsfid/rs) posterior probability distributions and their covariances. When combining these measurements with temperature fluctuations measurements of Planck, the polarization of Wilkinson Microwave Anisotropy Probe 9, and the 6dF Galaxy Survey baryonic acoustic feature, we do not detect deviations from a flat Λ cold dark matter (ΛCDM) model. Assuming this model, we constrain the current expansion rate to H₀ = 67.15 ± 0.98 km s⁻¹Mpc⁻¹. Allowing the equation of state of dark energy to vary, we obtain wDE = −1.080 ± 0.135. When assuming a curved ΛCDM model we obtain a curvature value of ΩK = −0.0043 ± 0.0047

    Analysis of Locally Coupled 3D Manipulation Mappings Based on Mobile Device Motion

    Get PDF
    We examine a class of techniques for 3D object manipulation on mobile devices, in which the device's physical motion is applied to 3D objects displayed on the device itself. This "local coupling" between input and display creates specific challenges compared to manipulation techniques designed for monitor-based or immersive virtual environments. Our work focuses specifically on the mapping between device motion and object motion. We review existing manipulation techniques and introduce a formal description of the main mappings under a common notation. Based on this notation, we analyze these mappings and their properties in order to answer crucial usability questions. We first investigate how the 3D objects should move on the screen, since the screen also moves with the mobile device during manipulation. We then investigate the effects of a limited range of manipulation and present a number of solutions to overcome this constraint. This work provides a theoretical framework to better understand the properties of locally-coupled 3D manipulation mappings based on mobile device motion

    The WiggleZ Dark Energy Survey: Survey Design and First Data Release

    Get PDF
    The WiggleZ Dark Energy Survey is a survey of 240,000 emission line galaxies in the distant universe, measured with the AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope (AAT). The target galaxies are selected using ultraviolet photometry from the GALEX satellite, with a flux limit of NUV<22.8 mag. The redshift range containing 90% of the galaxies is 0.2<z<1.0. The primary aim of the survey is to precisely measure the scale of baryon acoustic oscillations (BAO) imprinted on the spatial distribution of these galaxies at look-back times of 4-8 Gyrs. Detailed forecasts indicate the survey will measure the BAO scale to better than 2% and the tangential and radial acoustic wave scales to approximately 3% and 5%, respectively. This paper provides a detailed description of the survey and its design, as well as the spectroscopic observations, data reduction, and redshift measurement techniques employed. It also presents an analysis of the properties of the target galaxies, including emission line diagnostics which show that they are mostly extreme starburst galaxies, and Hubble Space Telescope images, which show they contain a high fraction of interacting or distorted systems. In conjunction with this paper, we make a public data release of data for the first 100,000 galaxies measured for the project.Comment: Accepted by MNRAS; this has some figures in low resolution format. Full resolution PDF version (7MB) available at http://www.physics.uq.edu.au/people/mjd/pub/wigglez1.pdf The WiggleZ home page is at http://wigglez.swin.edu.au
    corecore