449 research outputs found

    Preventing Nerve Function Impairment in Leprosy: Validation and Updating of a Prediction Rule

    Get PDF
    Leprosy is caused by a bacterium that attacks the peripheral nerves. This may cause nerve function impairment (NFI), resulting in handicaps and disabilities. Therefore, prediction and prevention of NFI is extremely important in the management of leprosy. In 2000, a prediction rule for NFI was published, but circumstances have changed since the study was performed in the 1990s: the leprosy detection delay has shortened and the definition of NFI has changed. The original rule used ‘leprosy classification’ and ‘NFI present at diagnosis’ to predict future NFI. In the current patient population we studied an adjusted rule based on ‘leprosy classification’ and ‘presence of antibodies’. This adjusted rule predicted NFI more often than the original rule. With the adjusted rule it is now also possible to assess NFI risk before the first nerve damage event takes place. This may help doctors and health workers to improve surveillance for people at high risk. Early detection and treatment can then prevent permanent disabilities

    Deep learning based classification of dynamic processes in time-resolved X-ray tomographic microscopy

    Get PDF
    Time-resolved X-ray tomographic microscopy is an invaluable technique to investigate dynamic processes in 3D for extended time periods. Because of the limited signal-to-noise ratio caused by the short exposure times and sparse angular sampling frequency, obtaining quantitative information through post-processing remains challenging and requires intensive manual labor. This severely limits the accessible experimental parameter space and so, prevents fully exploiting the capabilities of the dedicated time-resolved X-ray tomographic stations. Though automatic approaches, often exploiting iterative reconstruction methods, are currently being developed, the required computational costs typically remain high. Here, we propose a highly efficient reconstruction and classification pipeline (SIRT-FBP-MS-D-DIFF) that combines an algebraic filter approximation and machine learning to significantly reduce the computational time. The dynamic features are reconstructed by standard filtered back-projection with an algebraic filter to approximate iterative reconstruction quality in a computationally efficient manner. The raw reconstructions are post-processed with a trained convolutional neural network to extract the dynamic features from the low signal-to-noise ratio reconstructions in a fully automatic manner. The capabilities of the proposed pipeline are demonstrated on three different dynamic fuel cell datasets, one exploited for training and two for testing without network retraining. The proposed approach enables automatic processing of several hundreds of datasets in a single day on a single GPU node readily available at most institutions, so extending the possibilities in future dynamic X-ray tomographic investigations

    Critical exponents and equation of state of the three-dimensional Heisenberg universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional Heisenberg universality class. We find gamma=1.3960(9), nu=0.7112(5), eta=0.0375(5), alpha=-0.1336(15), beta=0.3689(3), and delta=4.783(3). We consider an improved lattice phi^4 Hamiltonian with suppressed leading scaling corrections. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods and high-temperature expansions. The critical exponents are computed from high-temperature expansions specialized to the phi^4 improved model. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine a number of universal amplitude ratios.Comment: 40 pages, final version. In publication in Phys. Rev.

    Comparing belt positions for monitoring the descending aorta by EIT

    Get PDF
    In electrical impedance tomography, the impedance changes stemming from the descending aorta contain valuable information for haemodynamic monitoring. However, the low signal strength necessitates an optimal measurement setup. Among different belt positions investigated in this work, a transversal and low placement is the best choice for detecting signals of the descending aorta

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Early Lung Function Testing in Infants with Aortic Arch Anomalies Identifies Patients at Risk for Airway Obstruction

    Get PDF
    BACKGROUND: Aortic arch anomalies (AAA) are rare cardio-vascular anomalies. Right-sided and double-sided aortic arch anomalies (RAAA, DAAA) are distinguished, both may cause airway obstructions. We studied the degree of airway obstruction in infants with AAA by neonatal lung function testing (LFT). PATIENTS AND METHODS: 17 patients (10 RAAA and 7 DAAA) with prenatal diagnosis of AAA were investigated. The median (range) post conception age at LFT was 40.3 (36.6-44.1) weeks, median body weight 3400 (2320-4665) g. Measurements included tidal breathing flow-volume loops (TBFVL), airway resistance (R(aw)) by bodyplethysmography and the maximal expiratory flow at functional residual capacity (V'(max)FRC) by rapid thoracic-abdominal compression (RTC) technique. V'(max)FRC was also expressed in Z-scores, based on published gender-, age and height-specific reference values. RESULTS: Abnormal lung function tests were seen in both RAAA and DAAA infants. Compared to RAAA infants, infants with DAAA had significantly more expiratory flow limitations in the TBFVL, (86% vs. 30%, p<0.05) and a significantly increased R(aw) (p = 0.015). Despite a significant correlation between R(aw) and the Z-score of V'(max)FRC (r = 0.740, p<0.001), there were no statistically significant differences in V'(max)FRC and it's Z-scores between RAAA and DAAA infants. 4 (24%) infants (2 RAAA, 2 DAAA) were near or below the 10(th) percentile of V'(max)FRC, indicating a high risk for airway obstruction. CONCLUSION: Both, infants with RAAA and DAAA, are at risk for airway obstruction and early LFT helps to identify and to monitor these infants. This may support the decision for therapeutic interventions before clinical symptoms arise

    Elevated nerve growth factor and neurotrophin-3 levels in cerebrospinal fluid of children with hydrocephalus

    Get PDF
    BACKGROUND: Elevated intracranial pressure (ICP) resulting from impaired drainage of cerebrospinal fluid (CSF) causes hydrocephalus with damage to the central nervous system. Clinical symptoms of elevated intracranial pressure (ICP) in infants may be difficult to diagnose, leading to delayed treatment by shunt placement. Until now, no biochemical marker of elevated ICP has been available for clinical diagnosis and monitoring. In experimental animal models, nerve growth factor (NGF) and neurotrophin-3 (NT-3) have been shown to be produced by glial cells as an adaptive response to hypoxia. We investigated whether concentrations of NGF and NT-3 are increased in the CSF of children with hydrocephalus. METHODS: NGF was determined in CSF samples collected from 42 hydrocephalic children on 65 occasions (taps or shunt placement surgery). CSF samples obtained by lumbar puncture from 22 children with suspected, but unconfirmed bacterial infection served as controls. Analysis was performed using ELISA techniques. RESULTS: NGF concentrations in hydrocephalic children were over 50-fold increased compared to controls (median 225 vs 4 pg/mL, p < 0.0001). NT-3 was detectable (> 1 pg/mL) in 14/31 hydrocephalus samples at 2–51 pg/mL but in none of 11 control samples (p = 0.007). CONCLUSION: NGF and NT-3 concentrations are increased in children with hydrocephalus. This may represent an adaptive response of the brain to elevated ICP

    Development of lung function in very low birth weight infants with or without bronchopulmonary dysplasia: Longitudinal assessment during the first 15 months of corrected age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Very low birth weight (VLBW) infants (< 1,500 g) with bronchopulmonary dysplasia (BPD) develop lung damage caused by mechanical ventilation and maturational arrest. We compared functional lung development after discharge from hospital between VLBW infants with and without BPD.</p> <p>Methods</p> <p>Comprehensive lung function assessment was performed at about 50, 70, and 100 weeks of postmenstrual age in 55 sedated VLBW infants (29 with former BPD [O<sub>2 </sub>supplementation was given at 36 weeks of gestational age] and 26 VLBW infants without BPD [controls]). Mean gestational age (26 vs. 29 weeks), birth weight (815 g vs. 1,125 g), and the proportion of infants requiring mechanical ventilation for ≄7 d (55% vs. 8%), differed significantly between BPD infants and controls.</p> <p>Results</p> <p>Both body weight and length, determined over time, were persistently lower in former BPD infants compared to controls, but no significant between-group differences were noted in respiratory rate, respiratory or airway resistance, functional residual capacity as determined by body plethysmography (FRC<sub>pleth</sub>), maximal expiratory flow at the FRC (V'max <sub>FRC</sub>), or blood gas (pO<sub>2</sub>, pCO<sub>2</sub>) levels. Tidal volume, minute ventilation, respiratory compliance, and FRC determined by SF6 multiple breath washout (representing the lung volume in actual communication with the airways) were significantly lower in former BPD infants compared to controls. However, these differences became non-significant after normalization to body weight.</p> <p>Conclusions</p> <p>Although somatic growth and the development of some lung functional parameters lag in former BPD infants, the lung function of such infants appears to develop in line with that of non-BPD infants when a body weight correction is applied. Longitudinal lung function testing of preterm infants after discharge from hospital may help to identify former BPD infants at risk of incomplete recovery of respiratory function; such infants are at risk of later respiratory problems.</p
    • 

    corecore