228 research outputs found

    Chemical Weathering of Loess and Its Contribution to Global Alkalinity Fluxes to the Coastal Zone During the Last Glacial Maximum, Mid‐Holocene, and Present

    Get PDF
    Loess sediments are windblown silt deposits with, in general, a carbonate grain content of up to 30%. While regionally, loess was reported to increase weathering fluxes substantially, the influence on global weathering fluxes remains unknown. Especially on glacial‐interglacial time scales, loess weathering fluxes might have contributed to land‐ocean alkalinity flux variability since the loess areal extent during glacial epochs was larger. To quantify loess weathering fluxes, global maps representing the loess distribution were compiled. Water chemistry of rivers draining recent loess deposits suggests that loess contributes over‐proportionally to alkalinity concentrations if compared to the mean of alkalinity concentrations of global rivers (~4,110 ”eq L−1 for rivers draining loess deposits and ~1,850 ”eq L−1 for the total of global rivers), showing comparable alkalinity concentration patterns in rivers as found for carbonate sedimentary rocks. Loess deposits, covering ~4% of the ice‐ and water‐free land area, increase calculated global alkalinity fluxes to the coastal zone by 16%. The new calculations lead to estimating a 4% higher global alkalinity flux during the Last Glacial Maximum (LGM) compared to present fluxes. The effect of loess on that comparison is high. Alkalinity fluxes from silicate‐dominated lithological classes were ~28% and ~30% lower during the LGM than recent (with loess and without loess, respectively), and elevated alkalinity fluxes from loess deposits compensated for this. Enhanced loess weathering dampens due to a legacy effect changes in silicate‐dominated lithologies over the glacial‐interglacial time scale

    Detectability of motions in AAA with ECG-gated CTA: A quantitative study

    Get PDF
    Purpose: ECG-gated CT enables the visualization of motions caused by the beating of the heart. Although ECG gating is frequently used in cardiac CT imaging, this technique is also very promising for evaluating vessel wall motion of the aortic artery and the motions of (stent grafts inside) abdominal aortic aneurysms (AAA). Late stent graft failure is a serious complication in endovascular repair of aortic aneurysms. Better understanding of the motion characteristics of stent grafts will be beneficial for designing future devices. In addition, these data can be valuable in predicting stent graft failure in patients. To be able to reliably quantify the motion, however, it is of importance to know the performance and limitations of ECG gating, especially when the motions are small, as is the case in AAA. Since the details of the reconstruction algorithms are proprietary information on the CT manufacturers and not in the public domain, empirical experiments are required. The goal of this study is to investigate as to what extent the motions in AAA can be measured using ECG-gated CT. The authors quantitatively investigate four aspects of motion in ECG-gated CT: The detectability of the motion of objects at different amplitudes and different periodic motions, the temporal resolution, and the volume gaps that occur as a function of heart rate.\ud \ud Methods: They designed an experiment on a standard static phantom to empirically determine temporal resolution. To investigate motion amplitude and frequency, as well as patient heart rate, they designed dynamic experiments in which a home-made phantom driven by a motion unit moves in a predetermined pattern.\ud \ud Results: The duration of each ECG-gated phase was found to be 185 ms, which corresponds to half of the rotation time and is thus in accordance with half scan reconstruction applied by the scanner. By using subpixel localization, motions become detectable from amplitudes of as small as 0.4 mm in the x direction and 0.7 mm in the z direction. With the rotation time used in this study, motions up to 2.7 Hz can be reliably detected. The reconstruction algorithm fills volume gaps with noisy data using interpolation, but objects within these gaps remain hidden.\ud \ud Conclusions: This study gives insight into the possibilities and limitations for measuring small motions using ECG-gated CT. Application of the experimental method is not restricted to the CT scanner of a single manufacturer. From the results, they conclude that ECG-gated CTA is a suitable technique for studying the expected motions of the stent graft and vessel wall in AAA.\u

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Diet-Induced Muscle Insulin Resistance Is Associated With Extracellular Matrix Remodeling and Interaction With Integrin α2ÎČ1 in Mice

    Get PDF
    OBJECTIVE: The hypothesis that high-fat (HF) feeding causes skeletal muscle extracellular matrix (ECM) remodeling in C57BL/6J mice and that this remodeling contributes to diet-induced muscle insulin resistance (IR) through the collagen receptor integrin α(2)ÎÂČ(1) was tested. RESEARCH DESIGN AND METHODS: The association between IR and ECM remodeling was studied in mice fed chow or HF diet. Specific genetic and pharmacological murine models were used to study effects of HF feeding on ECM in the absence of IR. The role of ECM-integrin interaction in IR was studied using hyperinsulinemic-euglycemic clamps on integrin α(2)ÎÂČ(1)-null (itga2(-/-)), integrin α(1)ÎÂČ(1)-null (itga1(-/-)), and wild-type littermate mice fed chow or HF. Integrin α(2)ÎÂČ(1) and integrin α(1)ÎÂČ(1) signaling pathways have opposing actions. RESULTS: HF-fed mice had IR and increased muscle collagen (Col) III and ColIV protein; the former was associated with increased transcript, whereas the latter was associated with reduced matrix metalloproteinase 9 activity. Rescue of muscle IR by genetic muscle-specific mitochondria-targeted catalase overexpression or by the phosphodiesterase 5a inhibitor, sildenafil, reversed HF feeding effects on ECM remodeling and increased muscle vascularity. Collagen remained elevated in HF-fed itga2(-/-) mice. Nevertheless, muscle insulin action and vascularity were increased. Muscle IR in HF-fed itga1(-/-) mice was unchanged. Insulin sensitivity in chow-fed itga1(-/-) and itga2(-/-) mice was not different from wild-type littermates. CONCLUSIONS: ECM collagen expansion is tightly associated with muscle IR. Studies with itga2(-/-) mice provide mechanistic insight for this association by showing that the link between muscle IR and increased collagen can be uncoupled by the absence of collagen-integrin α(2)ÎÂČ(1) interaction

    Immune Cell Recruitment and Cell-Based System for Cancer Therapy

    Get PDF
    Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells, have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of immune cells, however, is important for the development of more efficacious cancer immunotherapies. It is well established that the basis and premise of immunotherapy is the accumulation of effective immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine receptors in the immune system has increased our knowledge of the regulatory mechanisms of the immune response and tolerance based on immune cell localization. Here, we review the immune cell recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors, and their use in cancer immunotherapy

    Orbital Observations of Dust Lofted by Daytime Convective Turbulence

    Get PDF
    Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called “dust devils”. On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet’s atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth

    Introduction: Toward an Engaged Feminist Heritage Praxis

    Get PDF
    We advocate a feminist approach to archaeological heritage work in order to transform heritage practice and the production of archaeological knowledge. We use an engaged feminist standpoint and situate intersubjectivity and intersectionality as critical components of this practice. An engaged feminist approach to heritage work allows the discipline to consider women’s, men’s, and gender non-conforming persons’ positions in the field, to reveal their contributions, to develop critical pedagogical approaches, and to rethink forms of representation. Throughout, we emphasize the intellectual labor of women of color, queer and gender non-conforming persons, and early white feminists in archaeology

    Biogeographic problem-solving reveals the Late Pleistocene translocation of a short-faced bear to the California Channel Islands

    Get PDF
    An accurate understanding of biodiversity of the past is critical for contextualizing biodiversity patterns and trends in the present. Emerging techniques are refining our ability to decipher otherwise cryptic human-mediated species translocations across the Quaternary, yet these techniques are often used in isolation, rather than part of an interdisciplinary hypothesis-testing toolkit, limiting their scope and application. Here we illustrate the use of such an integrative approach and report the occurrence of North America’s largest terrestrial mammalian carnivore, the short-faced bear, Arctodus simus, from Daisy Cave (CA-SMI-261), an important early human occupation site on the California Channel Islands. We identified the specimen by corroborating morphological, protein, and mitogenomic lines of evidence, and evaluated the potential natural and anthropogenic mechanisms of its transport and deposition. While representing just a single specimen, our combination of techniques opened a window into the behavior of an enigmatic species, suggesting that A. simus was a wide-ranging scavenger utilizing terrestrial and marine carcasses. This discovery highlights the utility of bridging archaeological and paleontological datasets to disentangle complex biogeographic scenarios and reveal unexpected biodiversity for island systems worldwide.Open Access fees paid for in whole or in part by the University of Oklahoma Libraries Radiocarbon and isotope laboratory work was supported in part by the NSF Archaeometry Program BCS-1460369 (to D.J.K. and B.J.C). M.B was supported by a Royal Society fellowship. Additional funding was provided by the University of Oklahoma, the University of Oregon, and the Smithsonian Institution.Ye
    • 

    corecore