181 research outputs found

    The formation of peptide-like molecules on interstellar dust grains

    Get PDF
    Molecules with an amide functional group resemble peptide bonds, the molecular bridges that connect amino acids, and may thus be relevant in processes that lead to the formation of life. In this study, the solid state formation of some of the smallest amides is investigated in the laboratory. To this end, CH4_{4}:HNCO ice mixtures at 20 K are irradiated with far-UV photons, where the radiation is used as a tool to produce the radicals required for the formation of the amides. Products are identified and investigated with infrared spectroscopy and temperature programmed desorption mass spectrometry. The laboratory data show that NH2_{2}CHO, CH3_{3}NCO, NH2_{2}C(O)NH2_{2}, CH3_{3}C(O)NH2_{2} and CH3_{3}NH2_{2} can simultaneously be formed. The NH2_{2}CO radical is found to be key in the formation of larger amides. In parallel, ALMA observations towards the low-mass protostar IRAS 16293-2422B are analysed in search of CH3_{3}NHCHO (N-methylformamide) and CH3_{3}C(O)NH2_{2} (acetamide). CH3_{3}C(O)NH2_{2} is tentatively detected towards IRAS 16293-2422B at an abundance comparable with those found towards high-mass sources. The combined laboratory and observational data indicates that NH2_{2}CHO and CH3_{3}C(O)NH2_{2} are chemically linked and form in the ice mantles of interstellar dust grains. A solid-state reaction network for the formation of these amides is proposed.Comment: Accepted for publication in MNRA

    Fluid intelligence and brain functional organization in aging yoga and meditation practitioners

    Get PDF
    Numerous studies have documented the normal age-related decline of neural structure, function, and cognitive performance. Preliminary evidence suggests that meditation may reduce decline in specific cognitive domains and in brain structure. Here we extended this research by investigating the relation between age and fluid intelligence and resting state brain functional network architecture using graph theory, in middle-aged yoga and meditation practitioners, and matched controls. Fluid intelligence declined slower in yoga practitioners and meditators combined than in controls. Resting state functional networks of yoga practitioners and meditators combined were more integrated and more resilient to damage than those of controls. Furthermore, mindfulness was positively correlated with fluid intelligence, resilience, and global network efficiency. These findings reveal the possibility to increase resilience and to slow the decline of fluid intelligence and brain functional architecture and suggest that mindfulness plays a mechanistic role in this preservation

    Complex organic molecules in low-mass protostars on Solar System scales -- II. Nitrogen-bearing species

    Get PDF
    The chemical inventory of planets is determined by the physical and chemical processes that govern the early phases of star formation. The aim is to investigate N-bearing complex organic molecules towards two Class 0 protostars (B1-c and S68N) at millimetre wavelengths with ALMA. Next, the results of the detected N-bearing species are compared with those of O-bearing species for the same and other sources. ALMA observations in Band 6 (\sim 1 mm) and Band 5 (\sim 2 mm) are studied at \sim 0.5" resolution, complemented by Band 3 (\sim 3 mm) data in a \sim 2.5" beam. NH2CHO, C2H5CN, HNCO, HN13CO, DNCO, CH3CN, CH2DCN, and CHD2CN are identified towards the investigated sources. Their abundances relative to CH3OH and HNCO are similar for the two sources, with column densities that are typically an order of magnitude lower than those of O-bearing species. The largest variations, of an order of magnitude, are seen for NH2CHO abundance ratios with respect to HNCO and CH3OH and do not correlate with the protostellar luminosity. In addition, within uncertainties, the N-bearing species have similar excitation temperatures to those of O-bearing species (\sim 100 \sim 300 K). The similarity of most abundances with respect to HNCO, including those of CH2DCN and CHD2CN, hints at a shared chemical history, especially the high D/H ratio in cold regions prior to star formation. However, some of the variations in abundances may reflect the sensitivity of the chemistry to local conditions such as temperature (e.g. NH2CHO), while others may arise from differences in the emitting areas of the molecules linked to their different binding energies in the ice. The two sources discussed here add to the small number of sources with such a detailed chemical analysis on Solar System scales. Future JWST data will allow a direct comparison between the ice and gas abundances of N-bearing species.Comment: Accepted to A&A, 41 pages, 37 figure

    The composition of the protosolar disk and the formation conditions for comets

    Get PDF
    Conditions in the protosolar nebula have left their mark in the composition of cometary volatiles, thought to be some of the most pristine material in the solar system. Cometary compositions represent the end point of processing that began in the parent molecular cloud core and continued through the collapse of that core to form the protosun and the solar nebula, and finally during the evolution of the solar nebula itself as the cometary bodies were accreting. Disentangling the effects of the various epochs on the final composition of a comet is complicated. But comets are not the only source of information about the solar nebula. Protostellar disks around young stars similar to the protosun provide a way of investigating the evolution of disks similar to the solar nebula while they are in the process of evolving to form their own solar systems. In this way we can learn about the physical and chemical conditions under which comets formed, and about the types of dynamical processing that shaped the solar system we see today. This paper summarizes some recent contributions to our understanding of both cometary volatiles and the composition, structure and evolution of protostellar disks.Comment: To appear in Space Science Reviews. The final publication is available at Springer via http://dx.doi.org/10.1007/s11214-015-0167-

    Looking for leakage or monitoring for public assurance?

    Get PDF
    Monitoring is a regulatory requirement for all carbon dioxide capture and geological storage (CCS) projects to verify containment of injected carbon dioxide (CO2) within a licensed geological storage complex. Carbon markets require CO2 storage to be verified. The public wants assurances CCS projects will not cause any harm to themselves, the environment or other natural resources. In the unlikely event that CO2 leaks from a storage complex, and into groundwater, to the surface, atmosphere or ocean, then monitoring methods will be required to locate, assess and quantify the leak, and to inform the community about the risks and impacts on health, safety and the environment. This paper considers strategies to improve the efficiency of monitoring the large surface area overlying onshore storage complexes. We provide a synthesis of findings from monitoring for CO2 leakage at geological storage sites both natural and engineered, and from monitoring controlled releases of CO2 at four shallow release facilities – ZERT (USA), Ginninderra (Australia), Ressacada (Brazil) and CO2 field lab (Norway)

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions

    Get PDF
    The astronomical gas-phase detection of simple species and small organic molecules in cold pre-stellar cores, with abundances as high as \sim10810910^{-8}-10^{-9} nH_\text{H}, contradicts the generally accepted idea that at 1010 K, such species should be fully frozen out on grain surfaces. A physical or chemical mechanism that results in a net transfer from solid-state species into the gas phase offers a possible explanation. Reactive desorption, i.e., desorption following the exothermic formation of a species, is one of the options that has been proposed. In astronomical models, the fraction of molecules desorbed through this process is handled as a free parameter, as experimental studies quantifying the impact of exothermicity on desorption efficiencies are largely lacking. In this work, we present a detailed laboratory study with the goal of deriving an upper limit for the reactive desorption efficiency of species involved in the CO-H2_2CO-CH3_3OH solid-state hydrogenation reaction chain. The limit for the overall reactive desorption fraction is derived by precisely investigating the solid-state elemental carbon budget, using reflection absorption infrared spectroscopy and the calibrated solid-state band-strength values for CO, H2_2CO and CH3_3OH. We find that for temperatures in the range of 1010 to 1414 K, an upper limit of 0.24±0.020.24\pm 0.02 for the overall elemental carbon loss upon CO conversion into CH3_3OH. This corresponds with an effective reaction desorption fraction of \leq0.070.07 per hydrogenation step, or \leq0.020.02 per H-atom induced reaction, assuming that H-atom addition and abstraction reactions equally contribute to the overall reactive desorption fraction along the hydrogenation sequence. The astronomical relevance of this finding is discussed.Comment: 9 pages, 7 figure

    Kernel regression estimation of fiber orientation mixtures in Diffusion MRI

    Get PDF
    We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III

    Probing Episodic Accretion in Very Low Luminosity Objects

    Get PDF
    Episodic accretion has been proposed as a solution to the long-standing luminosity problem in star formation; however, the process remains poorly understood. We present observations of line emission from N2H+ and CO isotopologues using the Atacama Large Millimeter/submillimeter Array (ALMA) in the envelopes of eight very low luminosity objects (VeLLOs). In five of the sources the spatial distribution of emission from N2H+ and CO isotopologues shows a clear anticorrelation. It is proposed that this is tracing the CO snow line in the envelopes: N2H+ emission is depleted toward the center of these sources, in contrast to the CO isotopologue emission, which exhibits a peak. The positions of the CO snow lines traced by the N2H+ emission are located at much larger radii than those calculated using the current luminosities of the central sources. This implies that these five sources have experienced a recent accretion burst because the CO snow line would have been pushed outward during the burst because of the increased luminosity of the central star. The N2H+ and CO isotopologue emission from DCE161, one of the other three sources, is most likely tracing a transition disk at a later evolutionary stage. Excluding DCE161, five out of seven sources (i.e., ~70%) show signatures of a recent accretion burst. This fraction is larger than that of the Class 0/I sources studied by Jørgensen et al. and Frimann et al., suggesting that the interval between accretion episodes in VeLLOs is shorter than that in Class 0/I sources
    corecore