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Abstract

We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion
MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based
image processing technique in which representative fiber models are estimated from collections of component fiber models in
model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide
computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on
multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions
for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed
with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment
image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo
clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation,
volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved
scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count,
and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human
subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and
includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior

longitudinal fasciculus I, II, and III.
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1. Introduction

Diffusion MR imaging provides an in-vivo probe of tis-
sue microstructure that enjoys numerous applications to neu-
roscience and clinical studies. This is due to its unique abil-
ity to image local patterns of water molecule diffusion, which
reflect physical properties of biological tissue [1]. These pat-
terns enable the quantification of brain white matter microstruc-
ture, as diffusion exhibits anisotropy due to the geometry of
neuronal axon projections [2]. This is useful for making lo-
cal measurements of fiber orientations through diffusion mod-
eling [3] and more global fiber bundle reconstructions through
tractography [4] [5]. In addition, atlas-based reconstructions
can reveal population-wide features of anatomy and serve as
a reference for comparing individuals [6]. Both tractography
and population-based atlasing are applications that depend on
a number of basic image processing tasks, including interpola-
tion, smoothing, and fusion [7]. For tractography, interpolation
is needed when determining fiber orientations off the voxel grid,
and smoothing is needed to control errors due to noise and other
image artifacts. For atlas construction, interpolation is needed
to resample images into a common space, and fusion is needed
to derive a composite image from a population. This paper de-
velops and evaluates methods for performing these tasks with
support for multiple distinct fibers, which are important for re-
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solving complex sub-voxel fiber configurations due to crossings
and partial volume effects [8].

In particular, the goal of this work is to develop and evalu-
ate methods for model-based image processing that are useful
for interpolation, smoothing, and fusion tasks with the multi-
compartment ball-and-sticks diffusion model. For this, we de-
rive a kernel regression framework for estimating fiber orien-
tation mixtures, which represent multiple fiber orientations per
voxel and associated volume fractions. In contrast to signal-
based image processing, this approach estimates fiber mod-
els from a collection of fiber models contained in volumetric
parametric maps. This is accomplished by extending a ker-
nel regression image processing framework for vector-valued
images [9] and building on prior work on model-based diffu-
sion MRI processing [10] [11]. We show how this formula-
tion generalizes a variety of tasks and allows for simple data-
adaptive extensions for bilateral filtering and model-selection,
which may be generally useful for parametric model-based im-
age processing. Our experimental evaluation first characterizes
performance with computational phantoms, and then explores
applications to quantitative tractography-based analysis of fiber
bundles and multi-fiber atlas construction.

The rest of the paper is organized as follows. In Secs. 2 and
3, we discuss related work and background material. In Sec. 4,
we describe our proposed model-based estimator, outline opti-
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mization techniques, and describe its application to streamline
tractography. In Sec. 5, we describe experimental evaluation of
our approach with computational phantoms and in vivo clinical
data. The synthetic data experiments evaluate the performance
of our method in relation to fiber orientations, volume fractions,
compartment count, and tractography-based connectivity. The
in vivo data experiments first measure the scan-rescan repro-
ducibility and reliability of fiber bundles metrics in individual
subjects. We then build a multi-fiber tractography atlas from 80
healthy subjects to study population-wide properties of white
matter. In Secs. 6 and 7, we discuss our results and conclude.

2. Related work

In this section, we briefly review related work and outline the
distinguishing features of the present approach.

This paper examines a model-based approach for diffusion
MRI processing. This contrasts with signal-based approaches
that apply filters to the vector-valued diffusion-weighted MRIs,
while accounting for factors such as the gradients strengths, di-
rections, and Rician noise [12]. Model-based approaches in-
stead operate on lower-dimensional mathematical representa-
tions of the diffusion signal [7]. Previous work has developed
such approaches for single diffusion tensors [13] and orienta-
tion distribution functions (ODFs) [14, 15]. We differ by con-
sidering multi-compartment models, which are a parametric al-
ternative to ODFs with the advantage of compartment-specific
measures and isotropic diffusion modeling. However, two no-
table challenges for processing multi-compartment models are
model selection (to determine the number of compartments)
and compartment matching (to solve the combinatorial prob-
lem of finding corresponding compartments among some set of
voxels) [16].

The approach is related to some prior work on multi-fiber
model-based image processing. Yap et al. proposed an ap-
proach for multi-fiber atlas construction with fiber orientations
extracted from ODF peaks [17], which dealt with similar com-
putational problems but was not designed for parameteric mod-
els. The present work differs by considering atlas construction
with the ball-and-sticks diffusion model and by relaxing some
assumptions on fiber correspondence and fiber count. The prior
work of Taquet et al. [10] first explored the idea of paramet-
ric model-based interpolation of multi-tensors and its applica-
tion to tractography and atlas construction, developing a rich
framework for multi-tensor processing based on Gaussian mix-
ture simplification [18]. Our work differs by considering di-
rectional measures of divergence that are compatible with the
ball-and-sticks model. This is necessary because the Burg ma-
trix divergence employed by the full multi-tensor framework is
not well-defined for the anisotropic stick compartments, so we
instead develop a divergence measure based on the directional
Watson distribution to serve the same purpose. We also differ
by incorporating data-adaptive extensions to support both bilat-
eral filtering and model selection, in contrast to previous work
that employed only spatial kernel weights and local-maximum
model selection. Some of the methods presented here have been

explored in previous conference work [11] [19], but those in-
cluded neither the full data-adaptive kernel regression estimator
nor the full experimental results presented here.

3. Background

Our work focuses on image analysis with multi-fiber
ball-and-sticks diffusion models, which falls into the multi-
compartment class of diffusion models [20]. This is a multi-
tensor constrained to include an isotropic “’ball” compartment
and a number of completely anisotropic “stick” compartments.
These constraints allow the model to achieve good performance
for single shell gradients with low b-value acquisitions at in-
termediate field strengths [21], which are common in clinical
applications. The ball compartment can account for isotropic
diffusion, and the volume fractions associated with each com-
partment can account for partial volume effects and mixtures
of bundles at crossings. There is also evidence that the volume
fraction maps provide a quantitative measure for clinical studies
[22]. With this model, the predicted diffusion-weighted signal
S is given by:

N
S = So|foexp(=db) + > frexp(-bd@v;?)| (1)

J=1

for a particular gradient encoding direction g, b-value b, and
baseline signal S(. This includes N fiber compartments with
fiber orientations ||v;|| = 1, fiber volume fraction 0 < f; < 1,
Z?’:O fx = 1, and shared diffusivity d > 0. It’s important to note
that there is no sign associated with fiber orientations, so there
is an equivalence v; ~ —v;. We use the following parameteri-
zation to denote a fiber orientation mixture M with N compart-
ments: M = {(fj,v j)}ij: ,- In our experiments, we fit the model
to the diffusion signal with the Bayesian approach of Behrens
et al. implemented in the FSL software library [23].

4. Methods

In this section, we present our model-based kernel regression
estimator for fiber orientation mixtures, followed by a descrip-
tion of extensions for data-adaptive processing. We then outline
the necessary optimization routines and practical implementa-
tion details. Finally, we describe how this can be applied to
deterministic streamline tractography.

4.1. Kernel Regression Estimation

We now formulate our approach for kernel regression esti-
mation of fiber orientation mixtures, which is the main contri-
bution of the paper. This builds on the prior work of Takeda et
al. on kernel regression image processing for scalar and vector
data [9] and prior multi-compartment processing [11] [18]. The
general idea of kernel regression, however, has also been pro-
posed in several other contexts as the moving average, kernel
smoothers, etc. [24]. The simplest of such is the Nadaraya-
Watson estimator (NWE) [25], which we focus on here. Given
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Figure 1: A flowchart illustrating the steps in the proposed method, detailed in Algo. 2. The input is a position for estimation and model-valued volumetric data.
Then, kernel weights are computed from the product of spatial and data-adaptive factors and normalized to sum to one. Then, weights are distributed among the
fiber compartments and multiplied by volume fraction. Finally, the estimated model is found by a clustering-based optimization procedure, detailed in Algo. 1.

Table 1: A summary parameters used for estimation, including a range of values found in our evaluation and experiments.

Symbol Name Description Range

h, Spatial bandwidth Specifies the size of the region used for estimation 1.0-3.0 mm

Ny, Data-adaptive bandwidth Specifies the sensitivity to local data structure 0.3-0.6

A Regularization Specifies how conservative the model selection should be 0.99-0.9999

Kinax Maximum complexity Specifies an upper bound on the number of fiber compartments 2-3
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Figure 2: Example uses of the proposed estimator for interpolation, smoothing,
and fusion tasks. Slices were taken from average human brain data at the junc-
tion of the corpus callosum (pink), corona radiata (blue), and cingulum (green).
Fibers are colored according to their orientation, and thickness encodes volume
fraction. The top panel shows interpolation at twice the original resolution,
demonstrating continuity of both fiber orientations and volume fractions. The
middle panel shows smoothing to reduce noise-induced angular error. The bot-
tom panel shows fusion of 80 aligned subjects to produce an atlas representing
the population.

a collection of data {(x;, y,~)}ic=1 and a desired regression function
$(xp) evaluated at point xy, the NWE assumes a product kernel
density distribution for observed data and takes the regression
function to be the conditional expectation = E(y|xg). This can
be simply expressed by the following least-squares problem:

with a kernel function K and bandwidth parameter /. In prac-
tice, larger values of / produce a smoother estimate. The ker-
nel K can be chosen from a variety of options, but we use the
standard Gaussian. The advantage of this approach is that it
makes few assumptions about the structure of the data and con-
sequently generalizes well to a number of tasks. In particular,
Takeda et al. [9] presented a general framework for image pro-
cessing based on this approach, showing it can be used for in-
terpolation, smoothing, and fusion. The goal here is to further
extend this approach to model-based estimation of fiber orien-
tation mixtures.

The primary limitation of the standard kernel regression ap-
proach is the assumption of vector-valued images, for which the
Euclidean distance ||x — y|| is a reasonable measure of discrep-
ancy. This assumption breaks down for diffusion model-valued
image data due to various constraints and the non-Euclidean
geometry of the models, e.g. fiber volume fractions and ori-
entations. This issue can be addressed by instead considering
a model-based measure of discrepancy d? and by performing
optimization over the constrained space of models. Given an
input position py and local neighborhood of data {(p;, Mi)}iczl
with M; = {(fij, Vi j)}yil, we formulate this extended estimator

M(po) as follows:
c
. ~ . 5
M(po) = argmin § K, (pi, po)d,,(M;, M) 4)
M

i=

Ky(pis po) = exp (=llpi = poll /1) 5)



given a positional bandwidth parameter #,. We denote the
neighborhood size here as C, and in practice, we choose a
neighborhood sufficiently large to include three standard devi-
ations of the Gaussian kernel, e.g. a 7x7x7 window of 1 mm?
voxels for 1, = 1 mm. We define the model-based discrepancy
d2, for fiber mixtures as follows:

2 N — i oS
dm(M’ M) - m;anldf(V]’ Vn(})) (6)
J
given a single fiber distance dj%:

d7(v,9) = 1 = (v-9)* = sin’(6) @)

The above definition of @2, is a matching-based distance that
accounts for the combinatorial structure of the model by mini-
mizing the sum-squared distances across all possible matching
functions 7 between compartments in M and those in M. This
formulation happens to allow efficient optimization and makes
no assumptions on compartment ordering or total count. Both
d? and dj% also have interesting relationships to statistical mea-
sures of divergence, which are discussed in the appendix.

4.2. Data-adaptive Extension: Model Selection

The estimator puts no constraints on the complexity of the es-
timated model, so some mechanism is needed to perform model
selection. One solution is to choose a fixed number of com-
partments; however, this can overestimate in some areas and
underestimate in others. Data-driven approaches can instead
use the fiber counts from the local neighborhood to estimate
the model complexity, e.g. the local-maximum estimator used
in prior work [18]. Another more conservative data-driven ap-
proach is to use the average fiber count (rounded to the nearest
integer). We propose another data-driven approach that works
by extending the estimator in Eq. 4 to include a regularization
term for the number of compartments N:

c

Hi(po) = avgmin > Ky (pis po)d, (My, M) + AN (8)
i=1

given a regularization parameter A. The goal of this approach is

to choose the fiber count that best supports the fiber orientation

data in the local neighborhood, rather than just the counts. In

later experiments, we compare these different model selection

approaches to assess their strengths and weaknesses.

4.3. Data-adaptive Extension: Bilateral Filtering

In addition to performing model selection, the estimator can
be simply modified to allow for bilateral filtering. The goal here
is to avoid blurring interesting features at boundaries of anatom-
ical structures. This issue has been studied for standard kernel
regression estimators, and one solution is to include additional
weights that reflect similarity between data values [9] [26]. We
include this idea by adding a data-adaptive factor as follows:

C
M(po, M) = argmin Z Kid2(M;, M) + AN ©)
M3

Ki = Kp(pi» po)Kin(M;, Mo) (10

Kn(M;, Mo) = exp (—d3,(M;, Mo) /) (1)

given a bandwidth parameter 4, and a reference model M.

This can be optimized with the same routines as Eq. 8; how-
ever, it is more computationally costly because the adaptive ker-
nel weights K, cannot be precomputed like the spatial kernel
weights K,. For voxelwise smoothing, the reference can be the
original input model; for tractography, it can be the model from
the previous step in tracking; for interpolation, it can be the
estimate without the bilateral factor K,,,.

4.4. Optimization

Next, we describe optimization routines for the proposed es-
timator and outline some practical issues for implementation.

The estimator in Eq. 8 involves an optimization problem
in which the weighted sum of model-based distances must be
minimized, subject to a regularization term for model selection.
Substitution of d,, and d gives a simpler form:

C N
Mi(p) = argmax > " kifij(Vij - Vmip)* + AN (12)
M, i 7

given the kernel weights k; in Eq. 10. This is equivalent to
solving the weighted axial DP-means clustering problem [27],
which is similar to the k-means algorithm with two extensions.
First, clustering is performed with axial variables [28], which
are equivalent to fiber orientations. Second, the number of clus-
ters is estimated from the data as in the DP-means algorithm,
a name derived from its relation to Dirichlet Process mixture
models [29]. An iterative algorithm for solving this is presented

in Algo. 1, and further discussion is in the appendix.

The full procedure for using the estimator is summarized in
Fig. 1 and detailed in Algo. 2. This process proceeds by first
collecting fiber models in a local neighborhood of the point of
estimation, then kernel weights are computed by the product
of spatial and data-adaptive factors. These weights are normal-
ized to sum to one and then distributed among the fiber com-
partments of each model. The above clustering problem is then
solved to estimate the output number of compartments, fiber
orientations, and volume fractions. A summary of the algo-
rithms parameters is shown in Table 1.

There are also some practical issues to note when implement-
ing this. First, the procedure is only guaranteed to find a local
minima, which depends on the starting conditions. This can be
helped by performing several random restarts and taking the so-
lution with the overall minimum , e.g. 10 restarts with shuffling
in our implementation. There may be some rare configurations
where the minimum is not well-defined, e.g. strictly orthogo-
nal fibers. If this occurs, the known model with highest weight
can be chosen; however, we check for this condition and never
encountered it in practice. Finally, the kernel weights must be
normalized by their total sum, as this ensures the total volume
fraction of the fiber compartments is conserved and the esti-
mated model volume fractions also sum to one.



4.5. Tractography

We applied the above estimator to deterministic tractography
using a generalization of the standard streamline approach to
account for multiple fibers. In the standard approach, a fiber
trajectory is considered a 3D space curve whose tangent vector
is equated with the fiber orientation of the voxelwise diffusion
models. This process proceeds by evolving a solution to a dif-
ferential equation with some initial condition at a given seed po-
sition. Typically, some geometric criteria are also used to stop
and exclude fibers, including angle threshold and minimum and
maximum length [30].

This approach must be adapted when multiple orientations
are present [16], and we use the following modifications. Dur-
ing tracking, one of the N possible fiber compartments must be
chosen for the next step, so we choose the fiber with the small-
est angular difference to the previous step, among those below
a given angle threshold. We also incorporate additional vol-
ume fraction termination criteria, where tracking is stopped if
the volume fraction of the chosen fiber compartment is below a
given threshold. Finally, we use the proposed model-based esti-
mator for interpolation and smoothing during tracking. We also
retain the volume fraction parameter during tracking in order to
estimate statistics across fiber bundles.

5. Experiments and Results

This section describes the evaluation of our method with four
experiments, including a discussion of the datasets, experimen-
tal design, evaluation metrics, and results in each experiment.
Two synthetic data experiments were conducted with compu-
tational phantoms to assess the ability of clustering-based op-
timization to match compartments and also to measure perfor-
mance of our proposed model selection and bilateral filtering
extensions. Two in vivo data experiments were conducted with
clinical scans to assess the practical benefits of our approach
in modeling human brain white matter fiber bundles. The first
investigated scan-rescan reliability of quantitative fiber bundle
metrics, and the second investigated population-level features
of white matter by constructing a multi-fiber tractography atlas
from 80 subjects.

All statistical analysis was performed using R 3.1.1 and gg-
plot2 [31]. Unless stated otherwise, the estimation parameters
were h, = 1.5 mm, h, = 0.5, 1 = 0.99, and the kernel support
radius was 5 voxels. All experiments fit two-fiber compart-
ment ball-and-sticks diffusion models with the Markov-Chain
Monte-Carlo procedure implemented in FSL XFIBRES [20].

5.1. Datasets and Preprocessing

Synthetic datasets: We generated datasets from two types of
computational phantoms, which were defined and synthesized
with the ball-and-sticks diffusion model as follows.

The first type of phantom represents a complex boundary be-
tween fiber bundles for voxel-based analysis. The phantom in-
cluded two fibers per voxel and represented two adjacent and
perpendicular bundles with a fixed volume fraction of 0.4 with a

third bundle that crosses both with a volume fraction varied be-
tween 0.2 and 0.4. This left an isotropic volume fraction of 0.2
to 0.4, depending on the condition. Diffusion-weighted images
were synthesized with with S¢ = 10000, d = 0.0017 mm?/s, 1
mm? voxels, and dimensions 30x30x5.

The second phantom represents a more complex set of bun-
dles for both voxel-based and connectivity-based analysis. This
included three bundles with a crossing and branching structure.
Diffusion-weighted images were synthesized with S = 10000,
d = 0.0017 mm?/s, 1 mm? voxels, and dimensions 71x71x15,
as described in Leemans et al. [32].

All images were synthesized with seven baseline volumes,
64 diffusion-weighted volumes with b-value 1000 s/mm? to
match the clinical imaging data. Rician noise was introduced
by adding Gaussian noise with standard deviation oy, to the
complex signal and taking the modulus, using Camino [33].
Noise level is reported by the signal-to-noise ratio in decibels,
SNR(dB) = 2010g,,(S 0/ T synrn)-

Human brain datasets: Clinical data included diffusion-
weighed volumes acquired from healthy volunteers with a
GE 1.5T scanner with a voxel size of 2mm® and image size
128x128 and 72 slices. For each volunteer, a total of 71 vol-
umes were acquired, with seven T,-weighted volumes (b-value
= 0 s/mm?) and 64 diffusion-weighted volumes with distinct
gradient encoding directions (b-value = 1000 s/mm?). 80 vol-
unteers were scanned with ages ranging between 25 and 65
years and roughly equal numbers between sexes. An addi-
tional five volunteers were scanned with three repetitions each
to assess scan-rescan reproducibility and reliability. The noise
level was estimated to be 22.05 dB using two manually drawn
regions-of-interest and the Rician corrected method in [34],
SNRq,(dB) = 20 loglo( V2 —m/2 % ﬂtissue/é-air)-

Diffusion-weighted MRI data was preprocessed using FSL
[23] as follows. First, the diffusion-weighted MRIs were cor-
rected for motion and eddy current artifacts by affine registra-
tion to the first T-weighted volume using FSL FLIRT with the
mutual information cost function. The gradient encoding direc-
tions were rotated to account for the alignment [35], and non-
brain tissue was removed using FSL BET.

The 3x5 scan-rescan volumes were used for assessing repro-
ducibility and reliability in the third experiment. For the fourth
experiment, a diffusion tensor atlas was constructed from the
other 80 subjects. This was done by first fitting single tensor
models using FSL DTIFIT and then constructing a population-
specific template by deformable tensor registration using DTI-
TK [36] [37]. The resulting deformation fields were retained
for creation of the multi-fiber atlas, and the single tensor atlas
was retained for comparison.

5.2. Synthetic Data Experiment with Boundary Phantom

Design:

The first experiment was conducted with the boundary phan-
tom (shown in Fig. 3) and was designed to test the fiber match-
ing and bilateral filtering features. For this, we defined two
regions of interest: an “on-boundary” two-voxel window, and
the remaining “off-boundary” voxels. The proposed estimator
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Figure 3: The phantom used in the first experiment in Sec. 5.2. This repre-
sents a complex boundary between fiber bundles and include “off-boundary”
and “on-boundary” regions-of-interest.

was compared to a so called “rank-based” estimator, which is
meant to serve as a point of comparison to evaluate compart-
ment matching. This rank-based method sorts fibers in each
model based on their volume fraction, and then each compart-
ment is processed independently as if it were a multi-channel
volume. We hypothesized that this rank-based approach would
introduce greater angular errors than our approach. To test per-
formance relative to previous work, we also compared the bi-
lateral estimator (Eq. 9) to one with only spatial weights (Eq.
4), which we will refer to as “linear”. We hypothesized that the
bilateral factor would have lower error at the boundary between
bundles. In each condition, we introduced noise and measured
deviation from the ground truth with evaluation metrics sim-
ilar to Ramirez-Manzanares et al. [38]. For this, fibers were
matched to the ground truth, and the total angular error and
volume fraction error was computed in each voxel and averaged
within each region of interest. SNR was varied from 15 to 25,
the data-adaptive bandwidth parameter 4, was varied from 0.1
to 1.0, and crossing bundle volume fraction was varied from 0.2
to 0.4. Each condition was repeated 20 times to obtain the sam-
ple mean and uncertainty. To exclude effects related to model
selection, the number of fiber compartments was assumed to be
known and fixed at two; however, the next experiment investi-
gates performance of the model selection component.

Results:

Results are shown in Figs. 4 and 5. We found isotropic and
fiber volume fraction error was similarly lowered in all meth-
ods; however the rank-based method had slightly lower error
on-boundary. We found rank-based orientation error to be sig-
nificantly higher than the other methods in all cases. We found
both linear and rank-based to introduce significant orientation
error at the boundary, exceeding that of noise for SNR > 20.
Bilateral filtering significantly reduced the error on-boundary
with a negligible increase elsewhere. Upon varying the adaptive
bandwidth, we found error had a local minima with good over-
all performance from 0.3 to 0.5, depending on the SNR. Upon
varying the crossing bundle fraction, we found rank-based esti-
mation to introduce very high orientation error when the bundle
volume fractions were within 0.05.
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Figure 4: Qualitative results from the first experiment described in Sec. 5.2.
The first panel shows the ground truth phantom at the boundary voxels. The
second panel shows fibers fit after adding Rician noise at S NR = 20. The third
and fourth panels show smoothing results using linear (Eq. 4) and bilateral (Eq.
9) kernel weights. The results show that both estimation techniques reduce
noise-induced angular error; however, adaptive estimation can avoid the orien-
tation blurring at the boundary voxels, due to the inclusion of the K, kernel
weights.

5.3. Synthetic Data Experiment with Bundle Phantom

Design:

The second experiment was conducted with the bundle phan-
tom (shown in Fig. 6) and was designed to test the model
selection methods and to assess performance in connectivity
mapping. The adaptive model selection (Eq. 8) technique
was compared with the following alternatives: “fixed” (always
two fibers), “mean” (rounded local average number of fibers),
“max” (local maximum of fiber count, like [18]). We tested
both voxel-wise errors and tractography-based connectivity er-
rors. Voxel-wise conditions measured orientation error, volume
fraction error, and also “missing” and “‘extra” fibers error [38].
We also tested connectivity measures derived from determin-
istic streamline tractography. For this, we manually delineated
volumetric masks representing ”white matter” along bundle tra-
jectories and “gray matter” regions at bundle endpoints. These
gray matter masks were used to seed deterministic tractogra-
phy, and the resulting tracks were then compared to the man-
ually delineated ground truth. For each bundle, we assessed
performance by measuring the valid fiber rate (fraction of seeds
that reach their intented target) and the Dice overlap coefficient
D(A, B) = 2vol(A N B)/(vol(A) + vol(B)), given bundle mask
A and ground truth B [39]. Tractography was performed with
5 seeds per voxel, step size 0.5 mm, 45° angle threshold. SNR
was varied from 15 to 25, and the regularization parameter was
varied across seven levels, which are listed in Fig. 8. Tractog-
raphy was performed with nearest-neighbor interpolation as a
baseline, and rank-based esimation was also performed in all
conditions for comparison. We hypothesized that mean selec-
tion would be most conservative and adaptive selection would
improve connectivity mapping and help control extra fiber error
while not significantly increasing missing fiber error. All con-
ditions were repeated twenty times to measure the sample mean
and uncertainty.
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Figure 5: Results from the first experiment in Sec. 5.2. The labels on the left indicate the region where results were aggregated, and each plot shows either
orientation or volume fraction error rates. The plot titles also show the volume fraction of the compartments (f; and f>). The top two rows show results with SNR
from 15 to 25, comparing the noisy, rank-based, linear, and adaptive estimation conditions (with &, = 1.5 and h,, = 0.5). We see that all methods perform well at
reducing volume fraction, with rank-based estimation performing slightly better with on-boundary fiber fractions. We see that rank-based estimation rates poorly
in orientation error, particularly in regions where bundle volume fractions are within 0.05 apart. We also see that linear estimation introduces high orientation error
in on-boundary voxels, while adaptive estimation avoids this issue. By sweeping across the data-adaptive parameter /,,, we see a local minima in orientation error
occurs between 0.3 and 0.5, depending on the SNR.
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Figure 6: Results from the second experiment in Sec. 5.3 The first panel shows
the phantom and region-of-interest, and the following three panels show trac-
tography using nearest-neighbor, rank-based, and adaptive estimation (SNR =
15). We see that nearest neighbor includes early terminations due to high ori-
entation error and compartment count error. We also compare to the rank-based
approach, which creates many spurious connections due to poor matching of
compartments in the crossing region. Adaptive estimation can improve both of
these issues through smoothing and clustering-based compartment matching.

Results:

Results are shown in Figs. 6, 7, and 8. We found similar
results for isotropic volume fraction as Exp. 1. Volume frac-
tion error was significantly higher in fixed and max selection,
with linear and adaptive performing best. Orientation error was
reduced in all conditions with adaptive selection performing
best by a small margin. Fixed and max selection showed very
high extra fiber error with linear and adaptive performing best.
Fixed and max selection had the lowest missing fiber error, with
adaptive selection being slightly higher. For tractography-based
measures, rank-based estimation performed poorly, nearest and
linear selection were better and comparable to each other. We
found adaptive, max, and fixed to perform very well, with adap-
tive performing slightly better is most cases. Upon varying
the regularization parameter, we found orientation error, frac-
tion error, and tractography performance to be rather stable, but
the extra and missing fiber error varied somewhat. This varia-
tion, however, was small compared to the errors introduced with
max and fixed selection. After inspecting the results, we found
max and fixed selection to be sensitive to noise and problems
in model fitting, resulting in over-estimated model complexity
such as “fiber splitting”, shown in Fig. 7.

5.4. Invivo Data Experiment for Individual Subjects

Design: The third experiment tested the reproducibility and re-
liability of quantitative tractography metrics obtained with the
proposed method in in vivo human brain data. For this, we
extracted fiber bundles from the scan-rescan dataset, including
the following structures: anterior thalamic radiation (atr), cin-
gulum bundle (cing), inferior longitudinal fasciculus (ilf), and
uncincate fasciculus (unc) in each hemisphere. Fiber bundles

é
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Figure 7: Results from the second experiment in Sec. 5.3. The first panel
shows the phantom and region-of-interest, and the following three panels show
tractography results using nearest neighbor interpolation, local-max model se-
lection, and adaptive model selection (Eq. 8). This shows how local-max
selection can sometimes introduce “fiber splitting” due to noise (SNR 17.5
shown). Adaptive selection can reduce this effect, resulting in smoother stream-
line curves and lower orientation and volume fraction errors (see Fig. 8).

were selected from whole-brain streamline tractography using a
multiple region-of-interest approach guided by anatomical ref-
erences [40] [41]. For each bundle, three masks (two inclu-
sion, one exclusion) were manually delineated in the population
specific atlas with ITK-SNAP [42] and then deformed to each
subject. Tractography was performed with the following meth-
ods: nearest-neighbor interpolation, rank-based estimation with
fixed selection, linear estimation with fixed selection, linear es-
timation with max selection, and our proposed adaptive kernel-
based estimation. Tracking parameters included two seeds per
voxel, and angle threshold 45°, step size 1.0 mm, minimum vol-
ume fraction 0.1, and minimum length 10 mm.

We computed four metrics for each bundle: the mean length,
mean volume fraction, total volume, and streamline count. Re-
producibility and reliability were measured with the coeffi-
cient of variation (CV) and the intra-class correlation coefficient
(ICC). The CV was measured by o/u, and averaged across
subjects, given the within-subject mean u; and standard devia-
tion 0. A lower CV score indicates higher reproducibility and
has units that are normalized to allow comparison across bun-
dle metrics. The ICC was measured by o /(0; + 07, given
the between-subjects variance a'i and within-subjects variance
o?. A larger ICC indicates more variance between subjects
than within subjects. This takes a maximum value of one, and
values above (.75 indicate high reliability. The implementation
used the R "ICC’ package [43].

Results: Results are shown in Fig. 9. We found that linear
and adaptive kernel-based estimation generally had lower or
roughly equal scan-rescan error (CV) compared to other meth-
ods. With adaptive estimation, bundle length had a CV of
3.56%, streamline count had a CV of 10.37%, total volume had
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a CV of 8.01%, and mean volume fraction had a CV of 2.3%.
We found that linear and adaptive estimation had the highest
reliability (ICC) in all cases. With adaptive estimation, total
volume had an ICC of 0.88, fiber count had an ICC of 0.88,
bundle length had an ICC of 0.84,and mean volume fraction
had an ICC of 0.72. Mean volume fraction had good and sim-
ilar performance across all methods. We also found that given
the same number of seed points, linear and adaptive estimation
both had a much greater number of surviving streamlines than
either nearest-neighbor or rank-based estimation.

5.5. Invivo Data Experiment for Atlas Construction

Design: The fourth experiment examined the construction of
a multi-fiber tractography atlas with the 80 subject population.
For this, we used the deformation fields computed with DTI-TK
to resample the multi-fiber models to diffusion atlas space. In-
terpolation was performed using our approach, and fibers were
reoriented by the local Jacobian and normalized to unit length,
i.e. Jv/||Jv|| given Jacobian J and fiber orientation v. Multi-fiber
fusion was then performed with our method to produce an aver-
age volume to represent the population. For comparison, stan-
dard single tensor tractography was performed in the diffusion
tensor atlas with a minimum fractional anisotropy of 0.15. The
single tensor atlas was created with the deformable registration
algorithm in DTI-TK using finite strain tensor reorientation and
the deviatoric tensor similarity metric. [36] [37]. In both at-
lases, major fiber bundles were manually delineated from whole
brain tractography. For the multi-fiber atlas, the corpus callo-
sum and superior longitudinal fasciculus I, I, and III were inter-
actively tracked and manually delineated with guidance from
atlas-space averaged Freesurfer gray matter labels. The lateral
projections of the corpus callosum were selected based on left
and right lobular regions. The superior longitudinal fasciculus
I, II, and III were delineated by selecting connections between
parietal cortex and superior, middle, and inferior subdivisions
of frontal cortex, respectively.

Results: Visualizations of the results are shown in Figs. 10
and 11. We found the multi-fiber atlas to include nearly all
features of the major bundles in the single tensor atlas. In ad-
dition, the multi-fiber atlas included more complete anatomical
features of several bundles. In particular, the arcuate fascicu-
lus included projections to inferior frontal gray matter, and the
corpus callosum included lateral projections connecting the left
and right hemispheres of frontal gray matter. We also found
reconstructions of the three portions of the superior longitudi-
nal fasciculus [44], which included crossings with numerous
other bundles. We found the superior longitudinal fasciculus I
crossed the corona radiata and superior projections of the cor-
pus callosum. The superior longitudinal fasciculus II was found
to cross the frontal lateral projections of the corpus callosum.
Slice-based visualizations in Fig. 11 show examples of other
crossings found in the multi-fiber atlas, including an axial slice
of the brainstem and a sagittal slice of the corona radiata.
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6. Discussion

In two synthetic data experiments, we evaluated the ma-
jor features of our approach, including compartment match-
ing, model selection, and bilateral filtering. To assess perfor-
mance in compartment matching, we compared our method to
the “rank-based” method, which matches solely based on vol-
ume fractions. The first experiment showed how our approach
can avoid large errors that occur with the rank-based estimator
when crossing bundles have similar volume fraction. The sec-
ond experiment showed how this problem arises during tractog-
raphy, and how clustering-based matching can avoid the invalid
connections of the rank-based approach. We also showed how
orientation blurring can occur at bundle boundaries when us-
ing kernel weights derived only from spatial information. The
first experiment showed how the bilateral filtering extension
can reduce this effect by incorporating the structure of the data
into the kernel weights. We also evaluated the proposed data-
adaptive approach for model selection and compared it with
previously proposed alternatives. We found “max” selection
to always out-perform “fixed” selection and good performance
in some cases; however, we found that both fixed and max se-
lection can overestimate the number of fibers in even low noise
conditions. These extra fibers give rise to compartment split-
ting, which both reduces the expected volume fraction and in-
troduces orientation errors that are visible in tractography. We
found the data-adaptive approach to reduce this effect, with
only a small increase in missing fiber error. In general, these
synthetic data experiments also showed our approach to sig-
nificantly reduce noise-induced errors in fiber orientation and
volume fraction and to improve connectivity mapping.

In the first in vivo data experiment, we examined the practical
benefit of our approach for fiber bundle modeling in individual
subjects. We found our approach provided reliable and repro-
ducible results for quantitative fiber bundle metrics, including
mean length, mean volume fraction, total volume, and stream-
line count. Among the measures, mean length and mean vol-
ume fraction performed best. Streamline count and total vol-
ume are perhaps less reliable due to their dependence on the
pose and sampling resolution of the voxel grid. While past
work has evaluated length-based measures [45], it is less clear
how volume fraction can be used as an index of white matter
[22] [46]. The results provide evidence that fiber bundle vol-
ume fraction may be a clinically useful measure in terms of
reproducibility; however, it remains unclear exactly how this
measure relates to others, such as fractional anisotropy, fiber
orientation dispersion, and apparent fiber density [47] [48]. The
scan-rescan results can also serve as a reference for gauging the
significance of group differences of fiber bundle metrics in clin-
ical imaging studies.

In the second in vivo data experiment, we examined an appli-
cation to multi-fiber atlas construction, using our approach for
interpolation during image resampling and fusion. We found
the resulting atlas to include complex fiber bundle features not
found in single tensor atlases [36]. In particular, the results
included atlas-based reconstructions of the superior longitudi-
nal fasciculus I, II, and III, all of which compare favorably
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Figure 9: Quantitative results from the third experiment described in Sec. 5.4. Scan-rescan reproducibility and reliability were measured for fiber bundle metrics
of eight fiber bundles. Reproducibility was measured with the coefficient of variation (CV), which gives a normalized measure of error across scans. Reliability
was measured with the intra-class correlation (ICC), which indicates the proportion of total variation that exists between subjects. A lower CV and a high ICC are
preferable, with an ICC above 0.75 being highly reliable. The top row shows reference visualizations of the bundles. The middle row shows results by bundle type,
with aggregation across bundle measures and hemisphere. The bottom row shows results by bundle measure, with aggregation across bundle type. We found linear
and adaptive estimation to show an improvement in nearyly all cases by the ICC metric and improvement in most cases by the CV metric.
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Figure 10: Results from the fourth experiment described in Sec. 5.5, which included the construction of a multi-fiber atlas of 80 normal human subjects. Our
proposed method was used for interpolation and fusion with deformation fields computed by DTI-TK. The top panel (A) shows a comparison of major bundles in
the standard single-tensor atlas and our proposed the multi-fiber atlas. Bundles include the corona radiata (green), inferior longitudinal fasciculus (blue), inferior
fronto-occipital fasciculus (orange), uncinate fasciculus (pink), corpus callosum (red), and the arcuate fasciculus (yellow). We found the multi-fiber atlas included
nearly all features found in the single tensor atlas and more complete reconstructions of the frontal projections of the arcuate and lateral projections of the corpus
callosum. The bottom panels show tractography results for complex fiber bundles including the lateral projections of the corpus callosum (B) and fronto-parietal
connections of the superior longitudinal fasciculus I, II, IIT (C). The detail view in panel B also shows a triple crossing inferred at the intersection of the corona
radiata, superior longitudinal fasciuculus, and corpus callosum. The three portions of the superior longitudinal fasciculus are also shown in panels A and C and
include crossings with the corona radiata and corpus callosum. These reconstructions compare favorably to related work that examined these bundles in single
human diffusion MRI reconstructions, dissection, and tracing studies in non-human primates.
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Figure 11: Results from the fourth experiment described in Sec. 5.5, which included the construction of a multi-fiber atlas of 80 normal human subjects. The top
row shows principal tensor orientations overlaid on fractional anisotropy, and the bottom row shows fibers from the multi-fiber atlas overlaid on total fiber volume
fraction. Fiber tube thickness reflects fractional anisotropy and per-fiber volume fraction in the top and bottom rows, respectively. The left column (A) shows an
axial slice of the brainstem, demonstrating crossing fibers of cerebellar and pyramidal tracts. The right column (B) shows a sagittal slice demonstrating crossing

fibers of the corona radiata and superior longitudinal fasciculus I.

to prior work on single subject reconstructions, post-mortem
dissection, and tracing studies in non-human primates [44]
[49] [50]. This method is potentially useful for constructing
population-specific brain atlases, where it can be used to exam-
ine population-wide features of anatomy or serve as a reference
for mapping bundles in individual subjects.

The software implementation consisted of custom Java code
with experiments run on a Sun Grid Engine to allow for paral-
lelized processing of simulation and human subject data. The
fusion algorithm ran on a single Intel 2.8 GHz Core i5 processor
and took 30 minutes for the 80 subject population. The primary
computational bottleneck of this step was main memory usage,
which required 6GB total. If applied to a larger population or
with a higher sampling resolution, this issue could be addressed
by decomposing the co-registered volumes into a number of
overlapping blocks, performing fusion of each block, and then
reconstructing the full atlas from the results.

There are a number of limitations and interesting open issues
to note. First, we make use of tensor-based registration; how-
ever, some work has found multi-compartment registration to
be beneficial [18] [51] [52]. Note, however, that d,,, is more of
a divergence than a strict distance as it is not symmetric, so this
may not be suitable for registration, where inverse-consistency
is desirable. Second, it may be beneficial to investigate appli-
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cations to other parametric diffusion models. The bilateral fil-
tering and adaptive model selection techniques could be simi-
larly applied to the full multi-tensor framework by substitution
of dy. The kernel regression framework could also be applied
to models that incorporate microstructural information, such as
NODDI [53] and ball-and-rackets [54]. This could be accom-
plished either by extending the proposed divergence measure to
include variable Watson k parameters or perhaps by a more gen-
eral formulation with a Bingham divergence. Finally, there is a
variety of applications to which this approach could be applied
and further evaluated. Here we looked at fiber bundle mapping,
but this could also be useful for brain network construction and
visualization for surgical planning and guidance.

The approach is also related to more general image process-
ing with orientation data, which touch research areas outside of
MRI. Early approaches in directional statistics examined meth-
ods for dealing with axial data, a term more common in the
statistics literature that applies equally well to fiber orientations
[55]. In computer vision and graphics, filtering [56] [57] [58]
[59], anisotropic diffusion [60] and bilateral filtering [61] have
been developed for orientation fields, e.g. in analyzing finger-
prints, hair, or textures. In the diffusion MRI literature, methods
for fiber orientation regularization have also been proposed us-
ing Markov random fields [62], variational methods [63], and



cohelicity [64]. The present work may have applications to
those other areas, but this paper is limited to applications to neu-
roimaging with diffusion MRI and the ball-and-sticks model.

7. Conclusion

In this paper, we presented and evaluated a model-based ker-
nel regression framework for estimating fiber orientation mix-
tures from model-valued image data. This framework generally
supports image interpolation, smoothing, and fusion with the
ball-and-sticks diffusion model and is compatible with scanner
protocols with standard clinical field strengths, single shells,
and low b-values. The kernel regression formulation also al-
lows for simple and efficient data-adaptive extensions for model
selection and bilateral filtering, and these general design of
these components may potentially be applied to image process-
ing with other multi-compartment parametric models. We ex-
perimentally evaluated our approach with synthetic data from
computational phantoms and in vivo clinical data from human
subjects. First, we showed our approach can address issues re-
lated to compartment matching and model selection, and can
avoid orientation blurring at bundle boundaries and fiber split-
ting due to noise. The evaluation showed significant reductions
in noise-induced orientation and volume fraction errors and im-
proved reliability in connectivity mapping. Through in vivo
data experiments, we tested the practical value of our approach
in analyzing individual subjects, showing improved scan-rescan
reproducibility and reliability of quantitative fiber bundle met-
rics. We then demonstrated the creation of a multi-fiber tractog-
raphy atlas from a population of 80 human subjects. In com-
parison to single tensor atlasing, our results show more com-
plete features of known fiber bundles and include reconstruc-
tions of lateral projections of the corpus callosum and complex
fronto-parietal connections of the superior longitudinal fasci-
culus. This atlas-based approach could be used to either study
population-wide features of anatomy or to aid fiber bundle map-
ping in individual subjects.

8. Appendix

In the above analysis, we employ dj%(a, b) (Eq. 7) as a mea-
sure of discrepancy between fiber orientations. This turns out to
have some useful geometric and statistical properties. For ex-
ample, given an orientation v, consider the mapping ¢(v) = w',
also known as the Veronese-Whitney embedding, the dyadic
product, or Knutsson mapping [65] [66] [67]. This can be imag-
ined to take points on the sphere to a higher dimensional sphere
and to fold its antipodes to give ¢(v) = ¢(—v). The Euclidean
distance under this mapping is then equivalent to dj% up to a
scalar factor: ||¢(a)— @(b)|]> = 2(1—(a-b)?) = Zd;(a, b) The ex-
trinsic mean is then given by y = 3 ; w;¢(v;), which must be pro-
Jected to the nearest orientation by argmin, ||¢(v)— y||2. This can
be solved in closed form by finding the principal eigenvector of
u [66]. This formulation also has a statistical interpretation,
as d?. is equivalent to the Bregman divergence between Watson
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distributions of equal dispersion [68] [27], and the weighted av-
erage is equivalent to the maximum likelihood estimate of the
direction of a Watson distribution [69]. These results support
prior work suggesting a relationship between extrinsic means
and maximum likelihood estimates for data in RPP" [70].

A connection can also be drawn between dy and prior work
using Gaussian mixture simplification with the Burg matrix di-
vergence, dpuro(A, B) = tr(AB™") — log(det(AB™")) — 3. While
dpure cannot be directly applied to the sticks due to their low
rank, it can be applied to sticks that are approximated by an
“inflated” positive definite tensor with ¢ added to the second
and third eigenvalues. If this approach is applied to a pair of
stick orientations a and b to produce inflated tensors A;,r and
By, then dp,,, can be reduced to dpyro(Ains, Bing) = (0 + 1/6 —
2)sin(6), given angle 6 between a and b. If 6 = (3— V/5)/2, then
Apurg(Aing, Bing) = d}(a, b), so the use of Gaussian mixture sim-
plification with inflated sticks is then equivalent to the “linear”
and “max” conditions in the experiments. We ran a simulation
experiment to numerically verify this and also found the “’in-
flated stick” Burg divergence implementation to take 40 times
longer on average.

For multi-fiber analysis, we employ d2 (Eq. 6) to measure
discrepancy between mixtures of fiber orientations, and this too
has useful geometric and statistical features. The form of d,, al-
lows the kernel regression estimator in Eq. 8 to be algebraically
reduced to the simpler form in Eq. 12, which is equivalent to a
clustering problem. The first sum-of-squares term has a statis-
tical interpretation as hard clustering with a mixture of Watsons
[28], and the additional regularization term has a statistical in-
terpretation as the small-variance asymptotic limit of a Dirichlet
process mixture, as in the DP-means algorithm [29]. Taken to-
gether, these make up the axial DP-means clustering problem in
Eq. 12. This is theoretically well-grounded because the Watson
distribution is an exponential family, and d is the associated
Bregman divergence [27]. The work of Jiang et al. also demon-
strates that the general form of Algo. 1 converges, albeit to a
local minima [71]. To avoid instability due to local minima, we
use random restarts with shuffling of the order of the input and
take the solution with the overall minimum of Eq. 12.
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Algorithm 1: axial DP-means clustering

Algorithm 2: fiber orientation mixture estimation

Input:

{(wy, v,)}f: ,- the input weights and orientations
A: the regularization parameter
K. @ maximum number of clusters

Output:

/* Initialize

K: estimated number of clusters
{OWy, ffk)},'lez estimated cluster weights and orientations
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